
The Open University of Israel

Department of Mathematics and Computer Science

End-to-End Object Detection with Neural

Networks

Final Paper submitted as partial fulfillment of the requirements

towards an M.Sc. degree in Computer Science

The Open University of Israel

Department of Mathematics and Computer Science

By

Guy Golan

Prepared under the supervision of Dr. Oren Barkan

December 2023

Abstract

End-to-end object detection has emerged as a powerful approach in computer vision,

aiming to overcome the limitations of traditional object detection methods that rely on

separate stages for detection and post-processing. This paper presents a comprehensive

exploration of end-to-end object detection, covering both the underlying deep learning

architectures and the state-of-the-art models. We begin with an overview of object

detection techniques, including traditional methods like Viola-Jones [1] and Histogram

of Oriented Gradients (HOG) [2] and continue with the foundational concepts of

convolutional neural networks (CNNs) and their common architectures. We then delve

into the advancements in object detection frameworks, including two-stage detectors

such as the region-based CNN (RCNN) [3] family and one-stage detectors like You Only

Look Once (YOLO) [4]. Finally, we provide an in-depth analysis of the Vision

Transformers (ViT) [5] and exploring two approaches for End-to-end detection - the

Detection Transformer (DETR) [10], and Pix2Seq [11], which represent the latest

advancements in end-to-end object detection. We explore the architectural components,

training strategies, and performance evaluations in detail. Through this paper, we aim to

provide a comprehensive understanding of end-to-end object detection and shed light on

the potential and challenges associated with this exciting field of research.

Table of contents

Abstract .. 2

Table of contents .. 3

1. Introduction .. 5

1.1. Problem statement .. 5

1.2. Key challenges in object detection ... 5

1.3. Datasets for object detection ... 6

1.4. Evaluating object detectors ... 7

2. Foundational Approaches to Object Detection .. 9

2.1. Classical methods for object detection ... 9

2.1.1. HOG .. 9

2.1.2. Viola-Jones .. 10

2.2. Convolutional neural networks ... 11

2.2.1. Introduction to CNNs .. 11

2.2.2. Basic components of CNNs ... 12

2.2.3. Common CNN architectures ... 17

2.2.4. State-of-the-art object detection frameworks .. 20

2.3. Transformers ... 25

2.3.1. Introduction to transformers .. 25

2.3.2. Self-attention mechanism .. 27

2.3.3. Multi-head attention .. 28

2.3.4. Transformer encoder architecture .. 30

2.3.5. Transformer decoder architecture .. 31

3. End to end object detection .. 33

3.1. Related work ... 34

3.2. DETR .. 35

3.2.1. Architectural Components of DETR ... 37

3.2.2. Object detection set prediction loss ... 38

3.2.3. Performance and Evaluation .. 40

3.2.4. Limitations and Drawbacks of DETR ... 41

3.3. Pix2Seq ... 42

3.3.1. Architecture ... 43

3.3.2. Loss .. 43

3.3.3. Inference .. 43

3.3.4. Performance and Evaluation .. 44

4. Experiments ... 45

4.1. YOLO-like model ... 45

4.2. DETR .. 48

5. Summary and conclusions ... 53

6. Bibliography .. 55

1. Introduction

Problem statement

Object detection is a fundamental task in computer vision that involves identifying and

localizing objects within an image or video. The required result is defined by drawing a

bounding box around the object in the image. The bounding box is defined by its four

edges, which are parallel to the axes of the image or video (see Figure 1). The goal is to

accurately localize the object within the bounding box, such that the box encompasses

the object with minimal extra space. This method is called "axis-aligned" because the

edges of the bounding box are parallel to the axes of the image, regardless of the

orientation or shape of the object itself.

Figure 1: Illustration of the object detection task. Every object detection is defined by a

bounding box (rectangle), different classes are colored differently.

Key challenges in object detection

Object detection is a complex problem that involves addressing various challenges.

Some of the key challenges are:

 Intra-class variation: Objects within the same class can have significant

variations in appearance due to factors such as occlusion, illumination, pose,

viewpoint, and other unconstrained external factors. These variations can lead to

difficulties in accurately detecting and localizing the objects. Non-rigid

deformation, rotation, scaling, and blurriness are some of the other factors that

can further complicate the problem.

 Number of categories: Object detection involves identifying objects from a large

number of categories, which can make the problem challenging to solve. The

high number of object classes also requires a large amount of annotated data for

training the detectors, which can be difficult to obtain in practice. One open

research question is how to build accurate detectors with fewer training

examples.

 Efficiency: With the rise of mobile and edge devices, the need for efficient

object detectors has become crucial. Realtime systems like autonomous vehicles

must get detection results on a dedicated hardware in a few milliseconds. Current

state-of-the-art models require significant computational resources to generate

accurate detection results, which is not feasible for many practical applications.

Developing more efficient object detectors is a major research challenge in the

field of computer vision.

Datasets for object detection

Object detection is a supervised learning task that requires a large amount of annotated

data for training and evaluation. Several datasets have been introduced over the years to

facilitate research and benchmarking in the field. In this section, we will introduce some

of the most used datasets for object detection, such as COCO [9], Pascal VOC [10], and

ImageNet [11].

The Common Objects in Context (COCO) [9] dataset is one of the most widely used

datasets for object detection. It contains more than 330,000 images with more than 2.5

million object instances labeled across 80 categories. The images in COCO are taken

from complex scenes with a diverse range of objects, making it a challenging dataset for

object detection. The dataset is split into three sets: train, validation, and test sets. The

train set contains 118,287 images, the validation set contains 5,000 images, and the test

set contains 40,000 images. The annotations for COCO include bounding boxes and

segmentation masks for each object instance, as well as labels for each object category.

The Pascal VOC (Visual Object Classes) [10] dataset is another popular dataset for object

detection. It was introduced in 2005 and has been used as a benchmark dataset for object

detection ever since. The dataset contains images from 20 different object categories,

including animals, vehicles, and household objects. The dataset is split into three sets:

train, validation, and test sets. The train set contains around 5,000 images, the validation

set contains around 5,000 images, and the test set contains around 5,000 images. The

annotations for Pascal VOC include bounding boxes for each object instance, as well as

labels for each object category.

ImageNet [11] is a large-scale image database with more than 14 million labeled images

across 20,000 categories. It was introduced in 2009 and has been used for various

computer vision tasks, including object detection. However, it is not specifically

designed for object detection, and the annotations for object detection are only available

for a subset of the images. The ImageNet detection challenge is a subtask of the

ImageNet challenge, where the goal is to detect objects in a set of 200 categories. The

dataset is split into train and validation sets, with 1.2 million and 50,000 images,

respectively.

Apart from these datasets, there are other datasets that have been introduced for specific

object detection tasks. For example, the KITTI dataset contains images and annotations

for detecting objects in autonomous driving scenarios, including cars, pedestrians, and

cyclists. The dataset includes around 7,500 images for training and testing, with

annotations for each object instance.

Evaluating object detectors

Object detectors use multiple criteria to measure the performance. The most common

evaluation metric is mean Average Precision (mAP).

First, we define the Intersection over Union (IoU), which is the ratio of the area of

overlap and the area of union between the ground truth and the predicted bounding box

(see Figure 2). A threshold is set to determine if the detection is correct (usually 0.5 or

higher). If the IoU is more than the threshold, it is classified as True Positive while an

IoU below it is classified as False Positive. If the model fails to detect an object present

in the ground truth, it is termed as False Negative.

Precision measures the percentage of correct predictions while the recall measures the

correct predictions with respect to the ground truth.

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

Figure 2 : Intersection over union definition and illustration.

Based on the above equation, average precision (AP) is computed separately for each

class. To compare performance between the detectors, the mean of average precision of

all classes, called mean average precision (mAP) is used, which acts as a single metric

for final evaluation.

Another commonly used evaluation metric is the F1-score, which is the harmonic mean

of precision and recall. The F1-score provides a single number that balances the trade-

off between precision and recall.

2. Foundational Approaches to Object Detection

Classical methods for object detection

HOG

Histogram of Oriented Gradients (HOG) [2] is a feature descriptor that is used for object

detection. HOG extracts the shape and texture features of an object by computing the

gradients of an image. It works by dividing the image into small cells and computing the

histogram of gradient orientations in each cell. The HOG descriptor then concatenates

the histograms of the cells in a block-wise fashion to form a feature vector that can be

used for object detection.

HOG was first introduced by Navneet Dalal and Bill Triggs in 2005 as a method to detect

pedestrians in images. It has since been used for many other object detection tasks such

as face detection, vehicle detection, and animal detection.

The HOG feature extraction process involves several steps. First, the image is converted

to grayscale and smoothed using a Gaussian filter to reduce noise. Then, the gradients

of the image are computed using the Sobel operator, which is a simple edge detection

filter. The gradient magnitudes and orientations are then computed for each pixel in the

image (Figure 3).

Next, the image is divided into small cells, typically 8x8 pixels, and the gradient

orientations within each cell are quantized into several bins. The most common binning

scheme uses 9 bins covering a range of 0 to 180 degrees. The gradient magnitudes are

weighted by their corresponding gradient orientations and accumulated into the

histogram bins.

Figure 3 : HOG detector. The RGB patch and gradients represented using arrows.

To increase robustness to lighting and contrast changes, the HOG descriptor also

includes normalization steps. First, the histograms within each cell are normalized using

a block-wise normalization scheme. Each block contains a fixed number of cells and

overlaps with adjacent blocks. The histograms within each block are concatenated into

a single feature vector and then normalized to have unit L2 norm. This normalization

step ensures that the descriptor is invariant to small changes in lighting and contrast.

Finally, the HOG descriptor is used as input to a machine learning algorithm such as a

support vector machine (SVM) for object detection. The SVM learns a decision

boundary between positive and negative examples in the feature space, which can be

used to classify new images.

While HOG was a significant improvement over earlier feature extraction methods such

as SIFT and SURF, it has since been largely supplanted by convolutional neural

networks (CNNs) for object detection.

Viola-Jones

The Viola-Jones algorithm [1] is a classic approach for object detection that uses Haar-

like features and a machine learning-based approach to detect objects in an image. The

algorithm works by scanning an image with a sliding window, and for each window,

computing a set of features that describe the image content. These features are computed

using Haar-like features, which are rectangular features that compute the difference

between the sum of the pixel intensities in two or more adjacent rectangles.

The algorithm then applies a simple machine learning algorithm, called AdaBoost, to

select a small number of the most relevant features and use them to classify the object in

the image. AdaBoost is a boosting algorithm that iteratively selects the best features and

trains a weak classifier on these features. The final classifier is a combination of these

weak classifiers.

Viola-Jones is known for its fast speed and good accuracy on face detection tasks.

However, it has some limitations, such as being sensitive to illumination changes and

being less effective on complex and cluttered scenes. The algorithm also requires careful

tuning of its parameters to achieve good performance.

Overall, Viola-Jones was a significant contribution to the field of object detection,

paving the way for modern approaches based on deep learning.

Convolutional neural networks

Introduction to CNNs

Convolutional Neural Networks (CNNs) are a type of neural network that has been

widely used in computer vision tasks, including object detection. CNNs are inspired by

the visual cortex of animals, which is known to be highly efficient in detecting visual

patterns. The basic idea of a CNN is to learn a set of filters that can extract meaningful

features from the input image and use these features to make predictions.

The input to a CNN is typically an image, represented as a 3D tensor of pixel values

(height x width x channels). The first layer of a CNN is a convolutional layer, which

applies a set of learnable filters to the input image. Each filter is a small matrix of weights

that slides over the input image, performing a dot product between the filter and the

image pixels at each location. This operation produces a feature map, which highlights

the presence of a certain pattern in the input image.

The convolutional layer is followed by a non-linear activation function, such as the

Rectified Linear Unit (ReLU). The ReLU function sets all negative values in the feature

map to zero, while leaving positive values unchanged. This operation introduces non-

linearity to the network, allowing it to learn more complex patterns.

After the activation function, the feature map is usually downsampled using a pooling

layer, which reduces the spatial dimensions of the feature map while preserving the most

important information. The most common pooling operations are max pooling, which

takes the maximum value in each pooling region, and stride convolution, which applies

in the convolution operation within skips.

The process of convolution, activation, and pooling is repeated multiple times, forming

a deep network of feature extractors. For image classification task, the final layers of the

network are typically fully connected layers, which take the output of the convolutional

layers and use it to make classification prediction. In the case of object detection, the

fully connected layers are usually connected to a set of output nodes that correspond to

the possible object classes, and the network outputs the class probabilities and bounding

box coordinates for each object in the image.

One of the main advantages of CNNs is their ability to learn hierarchical representations

of the input image, starting from low-level features such as edges and corners, and

gradually building up to high-level concepts such as object parts and textures. This

allows the network to capture both local and global context, making it robust to

variations in object appearance and occlusions.

CNNs have achieved remarkable success in object detection, outperforming traditional

hand-crafted feature extractors such as HOG and Viola-Jones. CNN-based object

detectors have been used in a variety of applications, including autonomous driving,

surveillance, and robotics.

In the next section, we will dive deeper into the components of a CNN, including

convolutional layers, pooling layers, activation functions, and popular CNN

architectures.

Basic components of CNNs

Convolutional layers

Convolutional layers are the building blocks of a CNN. They are designed to detect local

patterns or features in the input data by performing a mathematical operation known as

convolution. Convolutional layers consist of a set of learnable filters or kernels, which

are small matrices that slide over the input data and perform element-wise multiplication

with the local region of the input that they are currently aligned with. The result of the

convolution operation is a single value that represents the degree of similarity between

the filter and the input region (see Figure 4). This process is repeated for every possible

local region in the input data, resulting in a 2D output feature map.

Convolutional layers have several important properties that make them well-suited for

image classification and object detection tasks. First, they can capture spatial

relationships between adjacent pixels, which is important for identifying patterns in

images. Second, they can learn local, translation-invariant features that can be reused

across the entire image. Finally, by stacking multiple convolutional layers together,

CNNs are able to learn increasingly complex features and patterns.

One important consideration when designing convolutional layers is the size of the

filters. Smaller filters are able to capture more fine-grained details in the input data but

may be prone to overfitting. Larger filters can capture more global patterns in the data

but may not be as effective at capturing local features.

Another important parameter is the stride, which determines the step size at which the

filters move over the input data. A larger stride results in a smaller output feature map

and a reduction in computational complexity but may also result in a loss of information.

Overall, convolutional layers are a powerful tool for learning feature representations in

image data and are a key component of modern CNN architectures.

Figure 4: A 3X3 convolution operator illustrated.

Down-sampling methods: Pooling and Stride

There are two common approaches for down-sampling feature maps in convolutional

neural networks: pooling and stride.

Pooling (see Figure 5) involves dividing the feature map into non-overlapping regions

and computing a summary statistic for each region, such as the maximum value (max

pooling) or the average value (average pooling). Pooling reduces the spatial resolution

of the feature map, while keeping the number of channels constant. One advantage of

pooling is that it introduces a degree of translation invariance by effectively

summarizing the presence of a feature in each region rather than its exact location.

However, pooling can also result in loss of information, especially for small objects or

fine-grained features. Moreover, pooling is typically applied independently to each

channel, which can lead to poor performance when different channels contain

complementary information.

Figure 5: The pooling operation. In max pooling (left) the highest value is take while in average

pooling (right) the average of the pixels is calculated.

Stride involves convolving the input feature map with a filter with a larger stride (i.e.,

the step size between adjacent filter positions) than 1. This results in a down-sampled

output feature map with a smaller spatial resolution and a reduced number of channels

(See Figure 6). Stride preserves more spatial information than pooling since each output

pixel corresponds to a convolutional kernel centered at a particular location in the input

feature map. Stride also allows for more flexible control over the down-sampling factor

and can be combined with other convolutional operations, such as dilated convolution,

to capture multi-scale information.

Figure 6: Stride illustrated. Convolution is applied with skipping, which results a downscaled

image.

Activation functions

Activation functions are a critical component of convolutional neural networks (CNNs).

They introduce non-linearity, which is necessary to model complex non-linear

relationships between the inputs and outputs of a network. Without activation functions,

the network would be limited to linear transformations, and hence would be less

powerful in representing complex patterns and relationships.

There are several activation functions that can be used in CNNs. Some of the earlier ones

include the sigmoid and tanh functions, which were commonly used in the past but have

fallen out of favor in recent years due to some of their limitations. These functions have

a range between 0 and 1 or -1 and 1, respectively, which can cause gradients to vanish

during backpropagation. This means that the network can become difficult to train as the

updates to the weights become smaller and smaller.

In contrast, the rectified linear unit (ReLU) activation function has become the most

popular choice in recent years due to its simplicity and effectiveness. The ReLU function

outputs the input value if it is positive, and 0 otherwise (see Figure 7). This function is

much faster to compute than sigmoid and tanh, and has a much larger range of positive

values, making it less prone to gradient vanishing. Additionally, the sparsity induced by

ReLU has been shown to help with regularization, reducing overfitting and improving

generalization.

Despite its popularity, ReLU does have some limitations. The most prominent issue is

the problem of "dead" neurons, where the output of a neuron is always zero due to a

negative bias. This can cause a loss of representational power and reduce the

effectiveness of the network. To address this issue, several variants of ReLU have been

proposed, such as leaky ReLU, which adds a small positive slope to the negative region,

and exponential linear units (ELUs), which provide a smooth transition between the

negative and positive regions.

Figure 7: The ReLU function. Values bellow zero are mapped to zero, while values greater than

zero aren’t changed.

Fully connected layers

Fully connected layers (also known as dense layers) are used in neural networks to

connect every neuron in one layer to every neuron in the next layer (see Figure 8). In

CNNs, fully connected layers are typically used at the end of the network to produce the

final output, such as the class probabilities in a classification task.

Fully connected layers are similar to the traditional Convolutional neural networks in

that every neuron in one layer is connected to every neuron in the next layer. However,

they lack the spatial invariance property that convolutional layers provide, since the

weights are not shared across spatial positions. This means that fully connected layers

require a large number of parameters, which can lead to overfitting and make the

network difficult to train.

To address this issue, many CNN architectures use a combination of convolutional and

fully connected layers, with the fully connected layers placed at the end of the network.

The output of the last convolutional layer is typically flattened and fed into the fully

connected layers, which produce the final output.

While fully connected layers have some disadvantages, they can still be useful in certain

situations, such as when dealing with small input sizes or when the spatial structure of

the data is not important. However, in most cases, using a combination of convolutional

and fully connected layers is the preferred approach.

Figure 8: Fully connected layer. Every neuron is connected to the next layer by a dedicated

learned weight.

Common CNN architectures

Convolutional Neural Networks (CNNs) have been widely used for image classification

tasks, with many notable architectures developed over the years. While classification

and object detection are different tasks, the underlying CNN architecture is similar for

both. Understanding the evolution of CNNs for classification can provide insights into

the development of CNNs for object detection, which we will discuss in the next section.

In this section, we'll explore some of the most prominent CNN architectures designed

for classification tasks.

LeNet-5

LeNet-5 [13], developed by Yann LeCun et al. in 1998, is one of the earliest CNN

architectures for image classification. It consists of two convolutional layers followed

by two fully connected layers. LeNet-5 was designed to classify handwritten digits from

the MNIST dataset, achieving an error rate of 0.95% at the time.

AlexNet

AlexNet [14], developed by Alex Krizhevsky et al. in 2012, is a more complex CNN

architecture that consists of eight layers, including five convolutional layers and three

fully connected layers (see Figure 9). It was the first CNN architecture to win the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, achieving an

error rate of 15.3%, which was a significant improvement over the previous best result

of 26.2%.

Figure 9: AlexNet architecture. 5 layers of convolutions are followed by three dense layers.

VGGNet

VGGNet [15], developed by Karen Simonyan and Andrew Zisserman in 2014, is a deeper

and more complex CNN architecture than AlexNet. It consists of up to 19 layers, with

most of them being 3x3 convolutional layers (See Figure 10). VGGNet achieved

impressive performance on the ILSVRC, with a top-5 error rate of 7.3%.

Figure 10: VGG architecture. Deeper and more complex than older architectures.

GoogLeNet/Inception

GoogLeNet [16], developed by Christian Szegedy et al. at Google in 2014, introduced the

Inception module, which allowed for more efficient and effective use of convolutional

layers (See Figure 11). The GoogLeNet architecture consists of 22 layers and achieved a

top-5 error rate of 6.7% on the ILSVRC.

Figure 11: GoogleNet architecture. Improving the SOTA performence a bit more.

ResNet

ResNet [17], developed by Kaiming He et al. at Microsoft Research in 2015, introduced

the concept of residual connections (see Figure 12), allowing for deeper CNN

architectures to be trained more effectively and address the vanishing gradient problem.

ResNet consists of up to 152 layers and achieved a top-5 error rate of 3.6% on the

ILSVRC, which was a significant improvement over previous architectures.

Figure 12: A residual block. input of first layer is connected also to a deeper layer.

Summary

These architectures are all designed for image classification tasks, and each one has its

unique strengths and weaknesses. While LeNet-5 is a simple architecture that was the

first to demonstrate the effectiveness of CNNs, ResNet is currently one of the most

powerful architectures due to its ability to train very deep networks.

In the next section, we'll discuss CNN architectures designed specifically for object

detection tasks, which build upon and extend the foundational principles and techniques

we discussed earlier.

State-of-the-art object detection frameworks

In the previous section, we explored the basic components of convolutional neural

networks (CNNs) and discussed some of the most common CNN architectures, such as

AlexNet, VGG, and ResNet. While these models have achieved significant success in

image classification tasks, they are not specifically designed for object detection. In

recent years, state-of-the-art object detection frameworks have emerged that build upon

the foundations laid by these CNN architectures.

In this section, we will explore some of the most advanced object detection frameworks

available today. These models can detect objects in complex images with remarkable

accuracy and speed. We will start by discussing two-stage object detection frameworks,

which include region-based CNNs and their variants such as Fast R-CNN and Faster R-

CNN. We will then explore one-stage detectors, including You Only Look Once

(YOLO) and its various iterations. Finally, we will discuss some recent advancements in

object detection, including detectors based on feature pyramid networks (FPN).

Two-stage Detectors

Two-stage detectors, also known as region-based detectors, are generally follow a two-

step procedure: first, they generate region proposals, and then they classify the proposals

as either object or background.

Region-based CNN (RCNN) [3] was the first two-stage object detection framework that

introduced the concept of region proposals. The RCNN model proposes regions of

interest (ROIs) using a selective search algorithm, which generates a large number of

candidate regions from an image. The selective search algorithm is used to propose

potential object locations and generate region proposals. These proposals are then

warped to a fixed size and passed through a convolutional neural network (CNN) to

extract features. The extracted features are then used for classification and bounding box

regression (see Figure 13). Despite its success, RCNN is computationally expensive,

with a slow training and testing time, making it impractical for real-time applications.

Figure 13: RCNN stages. First, we get the proposals by selective search, then, for each patch -

Extract CNN features, and finally classify.

Fast R-CNN was introduced as an improvement over RCNN, where the region proposals

are generated from feature maps instead of the input image, making it faster than RCNN

(see Figure 14). Fast R-CNN first passes the entire image through a CNN, which

generates feature maps. Then, region proposals are generated using selective search

from these feature maps. Finally, the region proposals are pooled into a fixed-size

feature map and passed through a fully connected layer for classification and bounding

box regression. Experiment results showed that Fast R-CNN had 66.9% mAP while R-

CNN of 66.0% on PASCAL VOC 2007 dataset and inference time is about 200 times

faster.

Figure 14: Fast RCNN. The main difference from RCNN is the proposals are generated from a

downscaled feature map.

Faster R-CNN is an extension of Fast R-CNN that replaces the selective search

algorithm with a region proposal network (RPN) to generate region proposals. RPN is a

small CNN that takes the feature maps generated from the input image as input and

outputs region proposals. The RPN generates region proposals using anchor boxes,

which are pre-defined bounding boxes with different scales and aspect ratios. Faster R-

CNN achieved state-of-the-art results with improved speed over RCNN and Fast R-

CNN (mAP of 69.9%, nearly 10 times lower inference time).

One-stage Detectors

You Only Look Once (YOLO) is a family of object detection models that belong to the

one-stage detectors category. The first YOLO model was introduced in 2016 by Joseph

Redmon et al. Since then, several variants of YOLO have been proposed, including

YOLOv2, YOLOv3, and YOLOv4. In this section, we will discuss the key concepts and

improvements introduced in each of these models.

YOLOv1 was the first model in the YOLO family, and it proposed a new approach to

object detection. Unlike traditional object detection methods, YOLOv1 used a single

convolutional neural network to predict both the bounding boxes and the class

probabilities for each object in the image. This made the model faster and more efficient

than the two-stage detectors like RCNN.

The architecture of YOLOv1 consists of a single convolutional neural network that takes

the entire image as input and divides it into a grid of cells (see Figure 15). Each cell in

the grid predicts a fixed number of bounding boxes and their corresponding class

probabilities. The bounding boxes are represented by their x and y coordinates, height,

and width, and they are normalized by the image size. The class probabilities are

predicted using SoftMax, and they represent the probability of each object class for each

bounding box.

One of the key features of YOLOv1 was its ability to detect objects at different scales

and aspect ratios. The model achieved this by using anchor boxes, which are predefined

bounding boxes with different sizes and aspect ratios. The model learns to adjust the

anchor boxes to better fit the objects in the image.

While YOLOv1 was a significant improvement in terms of speed and efficiency, it had

some limitations. One of the main limitations was its accuracy, especially for small

objects. YOLOv1 also struggled with detecting overlapping objects and objects with

complex shapes.

YOLOv2 was introduced in 2017 and addressed some of the limitations of YOLOv1. The

main improvement introduced in YOLOv2 was the use of a new architecture called

Darknet-19. Darknet-19 was designed specifically for object detection and achieved

better accuracy than the previous architecture used in YOLOv1.

Another improvement introduced in YOLOv2 was the use of batch normalization. Batch

normalization is a technique that helps the model converge faster by normalizing the

input to each layer. YOLOv2 also used a technique called anchor box clustering to better

predict the anchor boxes for each object.

YOLOv2 also introduced a new training technique called multi-scale training. This

technique involved training the model on images at different scales and then combining

the predictions to improve accuracy. YOLOv2 also used a new loss function that

combined localization and classification losses, which improved the accuracy of the

model.

YOLOv3 was released in 2018 and introduced significant improvements over its

predecessors. It introduced several modifications to the original YOLO architecture that

improved its accuracy and speed, including feature pyramid networks (FPNs) and

shortcut connections.

FPNs allow for multi-scale feature extraction, which means that objects of different

sizes can be detected more effectively. FPNs are essentially a set of convolutional layers

that extract features at different scales, and then combine them to produce a set of feature

maps that are used to predict the final bounding boxes and class labels.

Shortcut connections, also known as skip connections, allow for the direct flow of

information between layers that are far apart in the network architecture. This can help

to mitigate the problem of information loss that occurs in very deep neural networks.

YOLOv3 was further improved in 2020 with the release of YOLOv4. This version

introduced a number of additional improvements, including a more complex backbone

network, advanced data augmentation techniques, and a more accurate loss function.

The backbone network used in YOLOv4 is the CSPDarknet-53, which is a modified

version of the Darknet-53 backbone used in YOLOv3. The CSPDarknet-53 architecture

reduces the computational cost of the network by using cross-stage partial connections,

which connect the early and late stages of the network.

In addition to the improvements in the backbone network, YOLOv4 also introduced a

number of data augmentation techniques that help to improve the accuracy of the model.

These techniques include mosaic data augmentation, which involves combining

multiple images into a single training image, and cutout data augmentation, which

randomly removes a portion of the image during training.

Finally, YOLOv4 introduced a new loss function called the focal loss, which is designed

to address the problem of class imbalance in object detection datasets. The focal loss

assigns higher weights to hard examples (i.e., examples that are misclassified by the

network with high confidence) and lower weights to easy examples (i.e., examples that

are correctly classified by the network with high confidence).

Overall, YOLO and its variants have made significant contributions to the field of object

detection, by introducing highly efficient and accurate object detection frameworks that

can operate in real-time.

These models have enabled a wide range of applications, including autonomous driving,

robotics, and surveillance systems.

Figure 15: YOLO architecture in details and in high level.

Post processing

It's important to note that the object detection frameworks we've discussed so far often

require post-processing techniques to refine their output. One common technique is non-

maximum suppression (NMS) [12], which is used to remove duplicate detections and

improve the accuracy of the final output.

During inference, the detection framework generates multiple candidates bounding

boxes for each object in the image. However, since the model is not perfect, some of

these boxes may be inaccurate and overlapping. NMS is applied to these candidate boxes

to remove duplicates and retain only the most confident detections.

The NMS algorithm works by first sorting the candidate boxes based on their confidence

scores (i.e., the probability that the box contains an object). It then starts with the box

with the highest confidence score and iterates over the remaining boxes to check if they

overlap significantly with the current box. If the overlap is above a certain threshold

(e.g., 0.5), the box is discarded, otherwise, it is kept as a valid detection (see Figure 16).

The gap between the loss function used to optimize the network output and the

evaluation metrics used to measure the performance of object detection models is one of

the reasons why post-processing methods like NMS can introduce some inaccuracy.

While the loss function is designed to directly optimize the network output, the

evaluation metrics are calculated after the post-processing step. Therefore, post-

processing methods are often heuristic and hand-crafted, and may not perfectly align

with the ultimate goal of the network. This misalignment can lead to a gap between the

optimized network output and the evaluation metrics, resulting in some inaccuracies in

the final predictions.

Figure 16: non maximum suppression (NMS). Overlapping boxes are being suppresssed so only

one box (with the highest confidence) survives

Transformers

Introduction to transformers

Transformers have emerged as a powerful class of models in various domains, including

natural language processing (NLP) and computer vision. Originally introduced for NLP

tasks, transformers have shown great potential in solving complex problems that require

modeling long-range dependencies and capturing global context. In recent years, they

have gained significant attention and have been successfully applied to computer vision

tasks, including object detection.

At the heart of transformers lies their ability to leverage self-attention mechanisms,

which enable the models to attend to different parts of the input sequence and capture

meaningful relationships. This attention mechanism allows the model to assign varying

weights to different positions, emphasizing more important information and effectively

modeling interactions between elements. This capability is particularly advantageous in

tasks such as object detection, where capturing contextual information and

understanding object relationships are crucial.

One of the key benefits of transformers in object detection is their ability to process the

entire image in parallel, unlike traditional convolutional neural networks (CNNs) that

rely on sequential processing and hierarchical feature extraction. By considering the

global context of the image, transformers can potentially capture long-range

dependencies and learn more comprehensive representations. This global perspective is

especially valuable for object detection, where objects may appear at various scales and

locations within the image.

Another advantage of transformers is their capacity to capture rich semantic

information. While CNNs excel at capturing low-level visual features, transformers

offer a more abstract representation by modeling higher-level semantics. This semantic

understanding allows transformers to reason about object classes, relationships, and

attributes, leading to more accurate object detection.

In the context of object detection, transformers have been successfully applied as

backbone architectures or as complete end-to-end solutions. Vision transformers (ViTs)

have gained prominence as a specific class of transformers designed for image-based

tasks. ViTs typically divide the image into fixed-size patches and flatten them into a

sequence of tokens, which are then processed by the transformer layers. This approach

allows transformers to handle images of arbitrary sizes and facilitates parallel

processing.

The next sections will delve into the key components of transformers, including the self-

attention mechanism, multi-head attention, and the architecture of transformer encoders.

The Transformer block is summarized and illustrated in Figure 17.

Figure 17: The transformer block architecture. Embedded input in connected to positional

encoder and sent to the encoder. The encoder is built of Multi head attention and feed forward

layers followed by normalization layers. Encoder output is then used by the decoder, which

uses cross attention mechanism to output probabilities after a linear layer.

Self-attention mechanism

The self-attention mechanism is a crucial component of transformers and plays a

fundamental role in capturing relationships between different elements within a

sequence. In the context of vision transformers, self-attention allows the model to

capture long-range dependencies and spatial relationships between image patches.

At its core, the self-attention mechanism calculates the importance or relevance of each

element in a sequence to all other elements. In the case of vision transformers, the input

sequence is typically a set of image patches. The self-attention mechanism computes

attention weights for each patch, determining how much attention should be given to

other patches when encoding the representation of a particular patch.

To understand how self-attention works, let's consider a simplified example. Suppose

we have an input sequence of image patches, where each patch is represented as a feature

vector. For each patch, the self-attention mechanism learns to assign weights to all other

patches based on their similarity. The similarity is measured by computing dot products

between feature vectors followed by a SoftMax operation to obtain normalized attention

weights.

These attention weights indicate the importance of each patch in relation to other

patches. Higher weights imply stronger connections, while lower weights suggest

weaker connections. The self-attention mechanism then combines the weighted

representations of all patches, producing a context-aware representation for each patch

that considers the information from the entire sequence.

The advantage of self-attention in vision transformers is its ability to capture both local

and global relationships. Unlike convolutional layers, which have fixed receptive fields,

self-attention can consider long-range dependencies between patches. This enables the

model to capture fine-grained details and capture context across the entire image,

leading to improved performance in tasks such as image classification and object

detection.

It's important to note that the self-attention mechanism is computationally intensive,

especially when applied to large input sequences. To address this, various techniques

have been proposed, such as using approximate or sparse attention patterns, to reduce

the computational complexity while still maintaining the effectiveness of the self-

attention mechanism.

Overall, the self-attention mechanism is a powerful tool in vision transformers, allowing

them to model complex relationships and dependencies within image patches. By

leveraging self-attention, vision transformers can capture both local and global

information, enabling them to excel in a wide range of computer vision tasks, including

object detection, image segmentation, and image classification.

Multi-head attention

Multi-head attention is an extension of the self-attention mechanism that allows

transformers to capture different types of relationships and attend to multiple aspects of

the input sequence simultaneously. It enhances the expressive power of the model by

enabling it to learn different representations and capture diverse patterns.

In a multi-head attention mechanism, the input sequence is divided into multiple subsets,

or "heads," and each head performs its own self-attention calculation. Each head learns

a distinct set of attention weights, allowing the model to attend to different parts of the

input sequence and capture different types of information.

The key idea behind multi-head attention is to provide the model with the flexibility to

attend to different positions and learn diverse representations. By incorporating multiple

heads, the model can capture both local and global dependencies, as well as capture

different types of relationships within the input sequence.

To compute multi-head attention, the input sequence is linearly projected into multiple

subspaces, with each subspace associated with a separate head. The self-attention

mechanism is then applied independently to each subspace, generating attention weights

and weighted representations. These weighted representations from each head are then

concatenated and linearly transformed to produce the final output.

The benefits of multi-head attention are twofold. First, it enables the model to capture

different types of relationships and attend to different parts of the input sequence

simultaneously. This allows the model to effectively capture both local and global

dependencies, capturing fine-grained details while maintaining a broader context.

Second, it provides a mechanism for the model to learn diverse representations, as each

head learns its own set of attention weights. This promotes model robustness and

enhances its ability to capture various patterns and features.

In the context of vision transformers, multi-head attention plays a crucial role in

enabling the model to capture complex visual relationships and dependencies. It allows

the model to attend to different image patches, capture both local and global spatial

information, and learn diverse representations that are beneficial for visual

understanding and analysis.

It's worth noting that the number of heads in multi-head attention is a hyperparameter

that can be tuned. Increasing the number of heads allows the model to capture more fine-

grained relationships but comes at the cost of increased computational complexity.

Balancing the number of heads is important to ensure a good trade-off between model

performance and computational efficiency.

In summary, multi-head attention is a key component of transformers that enhances their

ability to capture diverse relationships and attend to different aspects of the input

sequence. By incorporating multiple heads, transformers can capture both local and

global dependencies, learn diverse representations, and effectively model complex

patterns. In the context of vision transformers, multi-head attention plays a vital role in

enabling the models to understand and interpret visual information for tasks such as

image classification and object detection.

Transformer encoder architecture

The Transformer encoder is a crucial component of the Transformer architecture,

responsible for processing the input data and capturing contextual information. It

consists of several layers of self-attention and feed-forward neural networks. Unlike

traditional convolutional neural networks, the Transformer encoder does not rely on any

convolutional or pooling operations, making it highly parallelizable and capable of

capturing long-range dependencies effectively.

Positional Encoding:

One unique aspect of the Transformer encoder is the use of positional encoding. Since

the model does not have any inherent notion of order or position in the input sequence,

positional encoding is added to convey the relative positions of tokens. This encoding

enables the model to capture the sequential information crucial for tasks like natural

language processing and image understanding.

The positional encoding is typically added as a fixed representation to the input

embeddings. It consists of a set of sinusoidal functions of different frequencies and

phases, allowing the model to learn the relative positions of the tokens based on these

embeddings. By incorporating positional encoding, the Transformer encoder can

distinguish between tokens based on their position in the input sequence, enriching the

model's understanding of sequential information.

Self-Attention:

Within each layer of the Transformer encoder, self-attention plays a vital role in

capturing the relationships between different tokens in the input sequence. Self-attention

allows each token to attend to all other tokens in the sequence, and the model learns to

assign different weights or importance to different tokens based on their relevance for

the given task. This mechanism enables the model to capture long-range dependencies

and contextual information effectively.

Feed-Forward Neural Network:

In addition to self-attention, each layer of the Transformer encoder incorporates a feed-

forward neural network. This network consists of two linear transformations with a non-

linear activation function in between. The feed-forward neural network helps the model

capture complex, non-linear relationships between tokens and enables the encoder to

transform the representations learned from self-attention into more expressive and

higher-dimensional representations. Layer normalization is applied after each sub-layer

in the encoder, including the self-attention and the feed-forward sub-layers.

Layer normalization:

Layer normalization is a technique that normalizes the activations of each layer

independently. It helps address the issue of internal covariate shift by reducing the

distribution shift across the features of the layer. By normalizing the inputs to each layer,

layer normalization helps stabilize the learning process and improves the gradient flow

during training.

The layer normalization operation computes the mean and variance of the input

activations along the feature dimension and then normalizes the activations using these

statistics. It introduces learnable scale and shift parameters that allow the model to adapt

the normalized activations to the specific requirements of the task.

By incorporating layer normalization in the Transformer encoder, the model benefits

from improved stability and convergence during training. It helps alleviate the vanishing

gradient problem and allows for more efficient learning.

The combination of self-attention and feed-forward neural networks in the Transformer

encoder allows the model to process the input sequence iteratively, layer by layer,

gradually capturing more intricate relationships and generating enriched representations

of the input data. These representations are then passed on to the Transformer decoder

for further processing and generation.

Transformer decoder architecture

The Transformer decoder is responsible for generating the output sequence based on the

information processed by the Transformer encoder. It receives the encoded

representations from the encoder and utilizes self-attention and cross-attention

mechanisms to generate contextualized representations and make predictions.

Self-Attention in the Decoder:

Similar to the Transformer encoder, the decoder also employs self-attention

mechanisms to capture the relationships between different positions within the output

sequence. The self-attention mechanism allows each position in the output sequence to

attend to all other positions, enabling the decoder to incorporate relevant context and

generate accurate predictions.

However, there is a slight modification in the self-attention mechanism of the decoder

compared to the encoder. The self-attention in the decoder is masked to ensure that

positions attending to future positions are ignored during the prediction process. This

masking prevents the decoder from relying on future information that it should not have

access to at each decoding step, ensuring autoregressive behavior in generating the

output sequence.

Cross-Attention with Encoder Output:

In addition to self-attention, the decoder also employs cross-attention with the output of

the encoder. This cross-attention mechanism allows the decoder to attend to the encoded

representations from the encoder and incorporate relevant information from the input

sequence. By attending to different positions in the encoder output, the decoder can align

the generated output sequence with the input sequence, enhancing the coherence and

quality of the predictions.

Similar to the self-attention mechanism, the cross-attention in the decoder is also

masked to avoid attending to future positions. The masking ensures that the decoder

attends to only the relevant positions in the encoder output based on the decoding step,

preventing information leakage from future positions.

Positional Encoding in the Decoder:

Just like the encoder, the decoder also utilizes positional encoding to convey the relative

positions of tokens in the output sequence. The positional encoding helps the decoder

understand the sequential information and generate the output tokens in the correct

order.

Through the combination of self-attention, cross-attention, and positional encoding, the

Transformer decoder can effectively generate the output sequence based on the encoded

representations from the encoder. The self-attention mechanisms enable the decoder to

capture dependencies within the output sequence, while the cross-attention mechanisms

allow the decoder to incorporate relevant information from the input sequence. This

iterative process of attending and generating leads to the generation of coherent and

contextually rich output sequences.

It's important to note that the Transformer encoder and decoder work collaboratively,

with the decoder attending to the encoder output at different positions and utilizing the

encoded information to generate accurate predictions. This collaborative process forms

the foundation of the Transformer architecture and its ability to capture long-range

dependencies and generate high-quality output sequences.

3. End to end object detection

The traditional approaches to object detection often relied on multi-stage pipelines,

where models performed region proposal generation followed by classification and

bounding box refinement. However, these pipelines introduced complexities, such as

manual feature engineering and heuristic post-processing steps, which hindered their

efficiency and effectiveness.

One of the major challenges with the traditional multi-stage approach was the need for

post-processing steps, such as Non-Maximum Suppression (NMS), to filter and refine

the detected bounding boxes. While these steps were necessary to remove duplicate and

overlapping detections, they were additional components in the pipeline that required

careful tuning and were prone to introducing inaccuracies. Moreover, these post-

processing steps were often not end-to-end trainable, meaning that the optimization

process did not directly consider their performance.

In addition to the challenges posed by post-processing steps, another critical issue arises

when the output of the model is directly connected to the image space, particularly in

models like YOLO. These models often divide the input image into a grid and assign

bounding boxes to specific cells within the grid. While this approach allows for efficient

detection, it can lead to challenges in assigning accurate labels to the predicted bounding

boxes.

The resolution of the output grid can pose difficulties when objects span multiple cells

or are situated near cell boundaries. In such cases, it becomes challenging for the model

to precisely assign the correct label to the predicted bounding boxes. This uncertainty in

label assignment can result in the model outputting average predictions or struggling to

precisely localize objects that are partially covered by multiple cells.

To mitigate this issue, higher output resolution can be used, but the immanent problem

remains for any chosen resolution, while the latency of the model increase.

Another resolution was suggested in [31] by assigning outputs to labels with OTA

(Optimal transport assignment) algorithm, which makes the matching between outputs

and labels more flexible. This approach is very effective, but still does not fully mitigate

resolution problems.

To address these limitations, the concept of end-to-end object detection emerged as a

promising approach. End-to-end solutions aim to tackle the object detection task

holistically, optimizing the entire detection pipeline in a unified manner. By jointly

optimizing the model's ability to generate accurate bounding boxes and classify objects,

end-to-end approaches offer several advantages.

Firstly, end-to-end object detection models eliminate the need for manual feature

engineering. Instead, they learn hierarchical representations directly from the data,

enabling more effective feature extraction and representation. This reduces the reliance

on handcrafted features and allows the model to capture more intricate patterns and

contextual information present in the images.

Secondly, end-to-end models mitigate the issues associated with post-processing steps.

By jointly optimizing the detection and classification components, these models can

incorporate the post-processing logic within the network architecture itself. This

integration allows for more precise control over the detection outputs and ensures that

the entire system is trained and fine-tuned based on the desired evaluation metrics, such

as mean Average Precision (mAP).

Overall, the end-to-end approach revolutionizes object detection by providing a more

streamlined and trainable solution. In the following sections, we will explore some of

the notable end-to-end object detection models that have made significant contributions

to the field. These models encompass a range of techniques, from incorporating

transformers to novel architectural designs, and showcase the advancements achieved

in the pursuit of accurate and efficient object detection.

Before we delve into the details of DETR (Detection Transformer) and other concepts

that have reshaped the landscape of end-to-end object detection, some related work is

reviewed.

Related work

To achieve end-to-end detection, many approaches are explored in the previous

literature.

Concretely, in earlier research, numerous detection frameworks [19, 20, 21, 22, 23] based

on recurrent neural networks attempt to produce a set of bounding boxes directly.

Though they allow end-to-end learning in principle, they are only demonstrated

effectiveness on some small datasets and not against the modern baselines.

Several object detectors [28, 29] used the bipartite matching loss. However, in these

early deep learning models, the relation between different prediction was modeled with

convolutional or fully connected layers only and a hand-designed NMS post-processing

can improve their performance.

Learnable NMS methods [24, 25] and relation networks [27] explicitly model relations

between different predictions with attention. Using direct set losses, they do not require

any post-processing steps. However, these methods employ additional hand-crafted

context features like proposal box coordinates to model relations between detections

efficiently, while a real end-to-end approach look for solutions that reduce the prior

knowledge encoded in the model.

POTO [30] (Prediction-aware One-To-One) proposed a bipartite matching with

architecture based only on convolutions, relaying on spatial prior. This approach is

relatively cheap, but like in OTA [31] it gets into troubles trying to handle small and

dense objects due to the dependency on output resolution.

DETR

DETR (Detection Transformer) [10] represents a paradigm shift in object detection,

introducing a new approach that eliminates the need for handcrafted components such

as anchor boxes and non-maximum suppression (NMS). Instead, it leverages the power

of transformers, a powerful sequence modeling architecture originally introduced for

natural language processing tasks, to directly predict objects and their locations in a

single feed-forward pass. By adopting the transformer architecture, DETR has

overcome several limitations of previous approaches and demonstrated remarkable

performance improvements.

One of the main advantages of DETR over YOLO-like models lies in its ability to handle

variable numbers of objects without resorting to anchor boxes. Traditional detectors

required anchor boxes to encode prior knowledge about object sizes and aspect ratios,

which often introduced complexities in model training and limited their adaptability to

objects with different scales. DETR, on the other hand, employs a transformer-based

encoder-decoder structure that is inherently capable of handling varying object counts,

enabling it to detect objects efficiently and accurately regardless of their sizes.

Moreover, DETR introduces a novel concept called the "set prediction" formulation.

Unlike YOLO-like models that predict objects at the grid level, DETR treats object

detection as a set prediction problem. It models the entire image as a set of objects and

uses transformer encoders to capture the global context and relationships between

objects. This set-based approach allows DETR to generate predictions without the

spatial constraints imposed by grid cells, resulting in more flexible and context-aware

object detection.

Additionally, DETR eliminates the need for post-processing techniques like NMS by

formulating object detection as an optimization problem. By using bipartite matching

and the Hungarian algorithm [26], DETR directly associates predicted bounding boxes

with ground truth objects, avoiding the ambiguity and inefficiency introduced by NMS.

This direct alignment simplifies the detection process, reduces the risk of duplicate

detections, and enables a more accurate and reliable detection output.

In the following sections, we will delve deeper into the components and mechanisms of

DETR to understand its inner workings and explore its remarkable performance in

various object detection benchmarks. The schematic architecture of DETR is shown in

Figure 18.

Figure 18: DETR uses a conventional CNN backbone to learn a 2D representation of an input

image. The model flattens it and supplements it with a positional encoding before passing it

into a transformer encoder. A transformer decoder then takes as input a small, fixed number of

learned positional embeddings, which we call object queries, and additionally attends to the

encoder output. Each output embedding of the decoder is passed to a shared feed forward

network (FFN) that predicts either a detection (class and bounding box) or a “no object” class.

Figure 19: The internal details of Transformers in DETR. Left – the encoder. Right – the

decoder and prediction head.

Architectural Components of DETR

DETR introduces a novel architecture that combines the power of transformers with

object detection. The model consists of four main components: the CNN backbone, the

transformer-based encoder, the transformer-based decoder and finally – predictions

head. Together, these components enable DETR to effectively encode and process

visual information for accurate object detection.

1. CNN Backbone:

The CNN backbone in DETR plays a crucial role in extracting visual features from the

input image. It typically consists of a convolutional neural network architecture, such as

ResNet or VGG, that processes the image through a series of convolutional layers to

extract high-level visual features. The backbone network serves as a feature extractor,

transforming the raw image into a set of feature maps that capture important visual

information.

2. Transformer-Based Encoder (Figure 19 left):

The transformer-based encoder is responsible for processing the output feature maps

from the CNN backbone. It employs a stack of transformer layers to capture spatial

relationships and learn contextual representations. The self-attention mechanism within

the encoder allows the model to attend to relevant regions and incorporate global

contextual information into the object detection process. By stacking multiple layers,

the encoder progressively refines the representations and enables the model to reason

about the objects' locations within the image.

3. Transformer-Based Decoder (Figure 19 right):

The transformer-based decoder takes the output of the encoder and performs object

detection by predicting the class labels and bounding box coordinates for each object.

The decoder utilizes another set of transformer layers to process the encoded features

and generate object queries. These queries are then matched with the learned

representations of the objects in the image to make predictions.

4. Prediction Head: The prediction head is the final component of the DETR

architecture. It takes the refined feature representations from the decoder and produces

the final predictions for object detection. The prediction head typically consists of fully

connected layers or additional convolutional layers, which map the representations to

the desired output format. It outputs the bounding box coordinates and class

probabilities for each detected object in the image, when one of the classes is "not

object".

In the next section, we will delve deeper into the object detection process in DETR,

exploring how it performs set prediction using the transformer-based architecture. We

will discuss the unique design choices, loss functions, and training procedures that

contribute to DETR's impressive performance in object detection tasks.

Object detection set prediction loss

In DETR, the objective is to generate a fixed-size set of predictions, referred to as N, in

a single pass through the decoder. It is important to note that N is deliberately set to be

larger than the expected number of objects typically present in an image. During

training, one of the key challenges is to accurately score the predicted objects based on

their class, position, and size relative to the ground truth.

To address this challenge, DETR utilizes a loss function that facilitates an optimal

bipartite matching between the predicted objects and the ground truth objects. This

matching process helps establish the best correspondence between the predicted and

ground truth objects. By optimizing this matching, DETR can effectively determine the

object-specific losses, particularly those related to the bounding box predictions.

Bipartite matching

Let y be the set of ground truth set of objects (padded with "not object" labels to size N),

and �̂� = {𝑦�̂� }𝑖=1
𝑁 the set of the predictions (prediction head's output).

We would like to find a bipartite matching between these two sets, which is formulated

as a permutation f the predictions, π, that minimizes some cost function:

(1) �̂� =
𝑎𝑟𝑔𝑚𝑖𝑛

𝜋𝜖𝛱𝑁
(∑ 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑡(𝑦𝑖 , �̂�𝜋(𝑖))𝑁

𝑖=1)

Where 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑡 is a function describes a cost for between the ground truth 𝑦𝑖 and the

prediction in index 𝜋(𝑖) (will be defined later).

To obtain this optimal assignment, we can approach it as solving an assignment problem,

which can be effectively addressed using the well-known "Hungarian algorithm".

In the matching cost calculation, both the class prediction and the similarity between the

predicted and ground truth boxes are considered:

We denote 𝑦𝑖 = (𝑐𝑖, 𝑏𝑖), where 𝑐𝑖 is the class and 𝑏𝑖 is a four elements vector describing

the bounding box (width, height and center). Also, for index 𝜋(𝑖), �̂�𝜋(𝑖)(𝑐𝑖) is the

probability of class 𝑐𝑖, and �̂�𝜋(𝑖) the predicted bounding box. Then -

(2) 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑡(𝑦𝑖, �̂�𝜋(𝑖)) = −�̂�𝜋(𝑖)(𝑐𝑖) + 𝐿(𝑏𝑖, �̂�𝜋(𝑖))

Where 𝐿(𝑏𝑖, �̂�𝜋(𝑖)) measures the similarity between the boxes (The lower the better).

Predictions with high probability for the class 𝑐𝑖 and similar predicted box, will get a

low match cost and will be more likely to match this ground truth box, and vice versa.

Note – the Hungarian matching results a one-to-one assignment, as opposed to YOLO-

like models who assign many predictions to one label.

After we computed the best matching �̂�, we define the loss function:

(3) 𝐷𝐸𝑇𝑅𝐿𝑜𝑠𝑠(𝑦, �̂�) = ∑ [−𝑙𝑜𝑔𝑁
𝑖=1 (�̂��̂�(𝑖)(𝑐𝑖)) + 𝐿(𝑏𝑖, �̂��̂�(𝑖))]

The calculation of the matching cost follows a similar approach as the definition of the

matching cost, with the only difference being the use of the logarithm of the class

probability prediction, which has been found to be empirically beneficial.

The last term to be defined is 𝐿(𝑏𝑖, �̂�𝜋(𝑖)), which is the sum of two terms – the L1 loss of

every pair of measurements of the boxes, and the 1 – IoU of the boxes. For the padded

labels, no bounding box loss is added.

In summary, this novelty loss function encourages the model to output a unique

prediction for every label, and a "not object" class for the rest of the predictions.

Performance and Evaluation

To assess the performance of DETR and understand its strengths and weaknesses, it is

essential to conduct a comparative analysis with other state-of-the-art object detection

models. By comparing DETR with traditional models like RCNN and YOLO, as well

as other modern architectures, we can gain valuable insights into its capabilities.

One key aspect to consider is the detection accuracy achieved by DETR compared to

other models. DETR has demonstrated remarkable performance in terms of accuracy,

often surpassing traditional models. Its ability to handle varying object scales,

deformations, and occlusions, combined with the use of transformers for global context

modeling, allows DETR to capture intricate object details and achieve high localization

precision. Comparative evaluation using standard metrics like mean Average Precision

(mAP) shows that DETR (and later – its improved variants) consistently achieves

competitive or even superior performance compared to other models. As of the end of

2022 the leaderboard of all the object detection benchmarks is led by variants of DETR.

Another important aspect to evaluate is the computational efficiency of DETR compared

to alternative methods. Traditional models like RCNN often rely on complex region

proposal mechanisms, which can be computationally expensive. In contrast, DETR's

end-to-end nature eliminates the need for region proposal networks and subsequent post-

processing steps, resulting in a more efficient inference process. While DETR may have

a higher training time compared to some models due to its transformer-based

architecture, the inference speed is often faster, making it suitable for real-time

applications.

Furthermore, the ability of DETR to handle object detection in a holistic and unified

framework brings significant advantages. By simultaneously predicting object classes

and their corresponding bounding boxes, DETR eliminates the need for separate

classification and localization stages, reducing complexity and potential error

propagation. This end-to-end approach enables DETR to deliver more robust and

accurate predictions, especially in challenging scenarios with crowded or overlapping

objects. These scenarios, often overlooked by benchmarks that primarily focus on

quantitative metrics, highlight the true value of DETR's end-to-end framework. By

considering the complete context and interdependencies between objects, DETR can

effectively handle complex scenes and produce reliable predictions that capture the

intricacies of object relationships.

Limitations and Drawbacks of DETR

While DETR presents a promising approach to end-to-end object detection, it is

important to consider its limitations and potential drawbacks. Some notable aspects

include:

1. Training Time: Training DETR models can be computationally expensive and time-

consuming compared to traditional object detection methods. The large-scale

transformer architecture and the bipartite matching process contribute to longer training

times, requiring substantial computational resources.

2. Inference Time: Inference with DETR can also be relatively slow compared to other

object detection models. The sequential nature of transformer-based processing and the

need to process the entire image at once can result in increased inference time.

3. Memory Requirements: DETR models often demand significant memory resources

due to the large number of parameters in the transformer architecture. This can pose

challenges, particularly when deploying DETR on resource-constrained devices or in

real-time applications.

4. Interpretability: The interpretability of DETR can be challenging due to the complex

nature of transformer-based architectures. Understanding the decision-making process

of DETR and explaining its predictions can be more difficult compared to traditional

object detection models.

It is important to consider these limitations and trade-offs when deciding to use DETR

in specific applications. While DETR offers significant advantages, addressing these

limitations and optimizing the training and inference processes will further enhance its

practical utility in various scenarios.

Pix2Seq

Figure 20: Illustration of Pix2Seq framework for object detection. The neural net perceives an

image and generates a sequence of tokens that correspond to bounding boxes and class labels.

"Pix2seq: A Language Modeling Framework for Object Detection" is a new approach

to object detection that casts it as a language modeling task (see Figure 20). The authors

propose to represent object detection as the task of generating a sequence of tokens that

describe the objects in an image. The tokens can be used to represent the bounding boxes

and class labels of the objects. The authors then train a neural network to perceive the

image and generate the desired sequence of tokens.

Pix2Seq uses a neural network architecture that consists of an encoder and a decoder.

The encoder takes the image as input and produces a latent representation of the image.

The decoder then takes the latent representation as input and generates the sequence of

tokens.

The network is trained using a maximum likelihood objective function. The objective

function is simply the probability of the ground truth sequence of tokens given the

image.

The authors evaluate their approach on the COCO dataset and show that it achieves

competitive results to existing object detection methods. They also show that their

approach can be used to perform object detection in real time.

Architecture

Pix2Seq adopts an encoder-decoder architecture for its image-to-sequence translation

task. The encoder component is responsible for perceiving the pixel-level information

from the input image and encoding it into latent representations. Various encoder

architectures can be employed, including Convolutional Neural Networks (like the ones

mentioned at the "Common CNN architectures" section), transformer-based models, or

a combination of these approaches.

The generation process in Pix2Seq is facilitated by a Transformer decoder. The

Transformer decoder generates one token at a time, conditioned on both the preceding

tokens and the encoded representation of the input image. This sequential generation

approach eliminates the need for complex and customized architectures found in modern

object detectors, such as bounding box proposal and regression. Instead, tokens are

generated from a single vocabulary using a SoftMax operation, simplifying the overall

architecture and enhancing the model's interpretability.

Loss

In a manner similar to language modeling, the training of Pix2Seq involves predicting

tokens based on an image and preceding tokens. This prediction is guided by a maximum

likelihood loss function, defined as the negative sum of the log probabilities of the

predicted tokens given the input image and preceding tokens:

− ∑ wj log P(yj̃ |x, y1:𝑗−1)

𝐿

𝑗=1

Here, 𝑥 represents the given input image, while 𝑦 and �̃� are input and target sequences

associated with 𝑥, and L is the target sequence length. 𝑦 and �̃� are identical in the

standard language modeling setup, but they can also be different (e.g., for

augmentations). 𝑤𝑗 is a pre-assigned weight for j-th token in the sequence.

Inference

During the inference phase, the Pix2Seq model generates sequences by sampling tokens

from the model likelihood distribution P(𝑦𝑗 | x, y1:𝑗−1). This sampling process can be

performed in different ways, when the simplest one is to select the token with the highest

likelihood.

 The generation of the sequence continues until the EOS (End-of-Sequence) token is

generated, indicating the completion of the sequence. Once the sequence is generated, it

becomes straightforward to extract and de-quantize the object descriptions. This

involves retrieving the predicted bounding boxes and class labels.

Performance and Evaluation

As can be seen in the table below (Figure 21), Pix2Seq has demonstrated competitive

performance comparable to that of DETR.

Figure 21: Comparing basic CNNs, DETR and pix2seq. According to pix2seq article writers,

it gets the AP with smaller number of params.

One of the most thrilling

One notable advantage of Pix2Seq is its output representation as language tokens, which

inherently provides a distribution of box dimensions and classes. This distribution

enables applications to obtain more detailed information regarding the model's

certainty. For instance, it can be beneficial for an autonomous driving model that

receives a sequence of images for estimating the physical movement of objects using a

Kalman filter.

On the other hand, as an autoregressive architecture, Pix2Seq is relatively slow.

For example, in a crowded scene, the model will iteratively run O(k*n) iterations, where

k is the number of boxes params, and n is the number of objects (as opposed to YOLO

and DETR who are not dependent on the number of objects).

4. Experiments

Mobileye Global Inc. (ME) is a company developing autonomous driving technologies

and advanced driver-assistance systems (ADAS) including cameras, computer chips and

software. I am working at ME since 2020 as an algorithm developer, and my team is

specialized in neural networks for 3D object detection based on images inputs.

In this section, I will present and compare the results of YOLO and DETR models I

trained for vehicle and pedestrian detection in 2D and 3D (a Pix2Seq model is still not

stable). The exact architecture' loss and data are ME confidential, and therefore only

limited information will be presented.

It's important to note that the networks are designed for success in the task of

autonomous driving on Mobileye's chip. Therefore, both achieving the highest level of

performance and running time are of utmost importance, as real-time results need to be

obtained.

Additionally, some of the experiments are part of a work-in-progress (WIP) process, so

the results are temporary and subject to change.

YOLO-like model

The first model we tried to train was a YOLO like architecture. The network is based on

a ResNet-52 backbone and another head in a Unet architecture.

For runtime acceleration, the output resolution is 8 times smaller than the input

resolution.

The model outputs both 2D and 3D boxes measurements, and a confidence channel – for

every "pixel" of the output. We then apply a post process based on NMS with overlap

threshold of 0.1, with some more relaxations to decrease the number of output

candidates.

After some hyperparameters tuning we converged a model with a very high-

performance exceeding AP of 97.1% for reasonably visible closer than 40 meters

vehicles (Recall vs Precision can be shown in figure 22).

https://en.wikipedia.org/wiki/Autonomous_driving
https://en.wikipedia.org/wiki/Advanced_driver-assistance_systems

Figure 22: Zoon in of Recall-Precision curve of YOLO model. Results are very good, but still

need to be improved.

We chose confidence threshold of 0.946 to achieve recall of 98% for precision of 99%.

For harder objects (hidden / far) the AP decreases to 80%-90% and for very hard objects

– 60%-70%.

I developed a sophisticated GUI for presenting the raw output of the model and the post

processed results (An example is shown in figure 23).

Figure 23: A typical output of YOLO model.

On the top left - input image + model predictions (3d boxes projected to image).

On the bottom left – output confience map.

On the right – birds eye view of 3D boxes prediction

The model and post process are running very fast on EyeQ chip (around 50 ms) and are

already in production. Deploying the model to the EyeQ chip was seamless since it is

supporting the basic layers such as convolutions and ReLU.

As explained in this paper, some inherent issues popped up -

1. For overlapping objects (in image space), we tend to get "mid-boxes" – both in

2D and 3D (figure 24).

2. Some objects were "detected" by the model but were dropped out because of the

sophisticated handcrafted post process.

3. Sometimes NMS clusters two different objects as one and sometimes few

predictions of the same object survive it.

Figure 24: Red box is a false positive caused by the "mid-box issue" – when an output pixel

covers two objects in input, prediction tries to capture both objects.

As part of the training process, we have taken measures to avoid cases of mid-boxes and

have also adjusted a specific set of post-processing parameters to enhance performance

on the validation set. However, these efforts have not completely overcome edge cases

that arise across different configurations, resulting in a trade-off between recall and

precision in any case.

For example – we trained the model to prefer the closer object when it has a "doubt"

whether the pixel in the output belongs to the closer or farer object. This decreased the

number of mid-box events, but also decrease the recall on far (and naturally small in

image space) objects.

DETR

Based on the same backbone, we switched the YOLO head by a DETR head, and used

the set-to-set loss for training.

The first results were hard to converge, so we used some advanced variants of DETR

such as DAB (Dynamic Anchor Boxes) [18], which led to great results. In general, DETR

model handled hard scenarios better, had less false positives and

The current AP is 97.8% (a bit higher than the YOLO model), and no post process is

required.

But moreover – in addition to the better quantitative results, qualitative results are shown

as well.

In the following images the first is from YOLO model and the second is from DETR. In

the left is the input image (and the output confidence map for YOLO model) and in the

right BEV (Bird's eye view). The solid boxes are labels (ground truth), and the dashed

boxes are predictions.

1. Line of cars: The objects are dense, and as they get more far, they got less visible

and have less pixels in the image. As a result, the YOLO resolution output is not

sufficient to cover all the line and many objects are missed, (see Figure 25). As

opposed, the DETR model (Figure 26) manage to detect and output more vehicles

(though not all of them).

Figure 25: YOLO model misses few objects in the line, missing objects are colored in red.

Figure 26: DETR model manages to detect two of the missing objects of YOLO model.

2. Far object: (few pixels in input and output): YOLO model misses the vehicle

while DETR detects it:

Figure 27: YOLO model misses the vehicle in 60 meters (red colored).

3. Occluded truck

Figure 29: YOLO model misses the truck, hidden by a car.

Figure 28: DETR detects the vehicle missed by YOLO, though it's far and hidden.

Figure 30: DETR model detects the hidden truck.

The DETR model is a WIP, and we are still trying to improve it. One of the great

challenges is to make it train and run (inference) faster. Currently, training DETR model

takes around twice the time of YOLO model, and we cannot run it on EyeQ hardware

yet since it doesn’t support some of the key components of the transformer.

5. Summary and conclusions

In this comprehensive exploration of end-to-end object detection, we have delved into

the foundations, methodologies, and cutting-edge advancements in the field. Object

detection is a crucial task in computer vision, and over the years, it has seen significant

developments, transforming from classical approaches like HOG and Viola-Jones to

modern neural network-based models.

We began by elucidating the challenges in object detection, including intra-class

variation, the sheer number of categories, and the demand for efficiency in

contemporary models. Datasets and evaluation metrics were also discussed,

emphasizing the importance of metrics like mean Average Precision (mAP) in assessing

detection performance.

We then transitioned to the realm of Convolutional Neural Networks (CNNs) and

transformers. We dissected the foundational elements of CNNs, from convolutional

layers to common architectures like AlexNet, VGG, and ResNet. The emergence of

transformers in the domain of computer vision was explored, showcasing their self-

attention mechanism and multi-head attention capabilities.

Moving forward, we introduced state-of-the-art object detection frameworks. The

discussion encompassed the RCNN family, followed by the YOLO series. These models

have brought remarkable advancements to the field and opened new avenues for real-

time object detection.

The notion of end-to-end object detection was highlighted as a significant stride in

improving detection accuracy and robustness. By eliminating the need for post-

processing steps like Non-Maximum Suppression (NMS), end-to-end models offer a

holistic solution, as demonstrated in experiments.

The landscape of object detection has witnessed a remarkable transformation, from

traditional methods to contemporary deep learning approaches. With the advent of end-

to-end object detection frameworks like DETR, there's a clear trend towards models that

integrate object detection and localization seamlessly.

As we conclude this exploration, it's evident that the object detection field is dynamic

and evolving. End-to-end models exemplify the potential of modern computer vision

techniques. These models not only simplify the detection pipeline but also offer

improved accuracy and adaptability.

The future of object detection holds the promise of even more advanced models, novel

evaluation metrics, and a deeper integration of machine learning techniques with real-

world applications. Whether in autonomous vehicles, surveillance systems, or medical

imaging, the quest for precise, efficient, and reliable object detection remains a driving

force in computer vision research and development.

6. Bibliography

[1] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade

of simple features. In Conference on Computer Vision and Pattern Recognition

(CVPR).

[2] Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human

detection. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR).

[3] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature

hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition

(CVPR) (pp. 580-587).

[4] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look

Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR) (pp. 779-788).

[5] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,

Unterthiner, T., ... & Hinton, G. (2021). An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

[6] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet:

A large-scale hierarchical image database. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

[7] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... &

Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In

European Conference on Computer Vision (ECCV).

[8] PASCAL Visual Object Classes Challenge 2012 (VOC2012). Everingham, M.,

Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. International

Journal of Computer Vision (IJCV), 2014.

[9] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet:

A large-scale hierarchical image database. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

[10] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., &

Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. In

European Conference on Computer Vision (ECCV).

[11] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey

Hinton. Pix2seq: A language modeling framework for object detection. arXiv

preprint arXiv:2109.10852, 2021.

[12] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D.

(2010). Object Detection with Discriminatively Trained Part-Based Models.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

32(9), 1627-1645.

[13] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11),

2278-2324.

[14] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet

classification with deep convolutional neural networks. Advances in neural

information processing systems (NIPS), 25, 1097-1105.

[15] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[16] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ...

& Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of

the IEEE conference on computer vision and pattern recognition (CVPR) (pp.

1-9).

[17] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR) (pp. 770-778).

[18] Liu, S.; Li, F.; Zhang, H.; Yang, X.; Qi, X.; Su, H.; Zhu, J.; Zhang, L.

DAB-DETR: Dynamic anchor boxes are better queries for DETR. arXiv

preprint arXiv:2201.12329, 2022.

[19] Eunbyung Park and Alexander C Berg. Learning to decompose for

object detection and instance segmentation. arXiv preprint arXiv:1511.06449,

2015.

[20] Mengye Ren and Richard S Zemel. End-to-end instance segmentation

with recurrent attention. In IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

[21] Bernardino Romera-Paredes and Philip Hilaire Sean Torr. Recurrent

instance segmentation. In European Conference on Computer Vision, 2016.

[22] Amaia Salvador, Miriam Bellver, Victor Campos, Manel Baradad,

Ferran Marques, Jordi Torres, and Xavier Giro-i Nieto. Recurrent neural

networks for semantic instance segmentation. arXiv preprint arXiv:1712.00617,

2017.

[23] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end

people detection in crowded scenes. In IEEE Conference on Computer Vision

and Pattern Recognition, 2016.

[24] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-

maximum suppression. In IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

[25] Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS improving

object detection with one line of code. In: ICCV (2017)

[26] Kuhn, H.W.: The hungarian method for the assignment problem (1955)

[27] Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object

detection. In: CVPR (2018)

[28] Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object

detection using deep neural networks. In: CVPR (2014)

[29] . Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C.Y.,

Berg, A.C.: Ssd: Single shot multibox detector. In: ECCV (2016)

[30] WANG, Jianfeng, et al. End-to-end object detection with fully

convolutional network. In: Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2021. p. 15849-15858.

[31] GE, Zheng, et al. Ota: Optimal transport assignment for object detection.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2021. p. 303-312.

