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Abstract 

End-to-end object detection has emerged as a powerful approach in computer vision, 

aiming to overcome the limitations of traditional object detection methods that rely on 

separate stages for detection and post-processing. This paper presents a comprehensive 

exploration of end-to-end object detection, covering both the underlying deep learning 

architectures and the state-of-the-art models. We begin with an overview of object 

detection techniques, including traditional methods like Viola-Jones [1] and Histogram 

of Oriented Gradients (HOG) [2] and continue with the foundational concepts of 

convolutional neural networks (CNNs) and their common architectures. We then delve 

into the advancements in object detection frameworks, including two-stage detectors 

such as the region-based CNN (RCNN) [3] family and one-stage detectors like You Only 

Look Once (YOLO) [4]. Finally, we provide an in-depth analysis of the Vision 

Transformers (ViT) [5] and exploring two approaches for End-to-end detection - the 

Detection Transformer (DETR) [10], and Pix2Seq [11], which represent the latest 

advancements in end-to-end object detection. We explore the architectural components, 

training strategies, and performance evaluations in detail. Through this paper, we aim to 

provide a comprehensive understanding of end-to-end object detection and shed light on 

the potential and challenges associated with this exciting field of research. 
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1. Introduction 

Problem statement 

Object detection is a fundamental task in computer vision that involves identifying and 

localizing objects within an image or video. The required result is defined by drawing a 

bounding box around the object in the image. The bounding box is defined by its four 

edges, which are parallel to the axes of the image or video (see Figure 1). The goal is to 

accurately localize the object within the bounding box, such that the box encompasses 

the object with minimal extra space. This method is called "axis-aligned" because the 

edges of the bounding box are parallel to the axes of the image, regardless of the 

orientation or shape of the object itself. 

 

 

Figure 1: Illustration of the object detection task. Every object detection is defined by a 

bounding box (rectangle), different classes are colored differently. 

Key challenges in object detection 

Object detection is a complex problem that involves addressing various challenges. 

Some of the key challenges are: 

 Intra-class variation: Objects within the same class can have significant 

variations in appearance due to factors such as occlusion, illumination, pose, 

viewpoint, and other unconstrained external factors. These variations can lead to 

difficulties in accurately detecting and localizing the objects. Non-rigid 

deformation, rotation, scaling, and blurriness are some of the other factors that 

can further complicate the problem. 

 Number of categories: Object detection involves identifying objects from a large 

number of categories, which can make the problem challenging to solve. The 

high number of object classes also requires a large amount of annotated data for 

training the detectors, which can be difficult to obtain in practice. One open 

research question is how to build accurate detectors with fewer training 

examples. 



 Efficiency: With the rise of mobile and edge devices, the need for efficient 

object detectors has become crucial. Realtime systems like autonomous vehicles 

must get detection results on a dedicated hardware in a few milliseconds. Current 

state-of-the-art models require significant computational resources to generate 

accurate detection results, which is not feasible for many practical applications. 

Developing more efficient object detectors is a major research challenge in the 

field of computer vision. 

 

Datasets for object detection  

Object detection is a supervised learning task that requires a large amount of annotated 

data for training and evaluation. Several datasets have been introduced over the years to 

facilitate research and benchmarking in the field. In this section, we will introduce some 

of the most used datasets for object detection, such as COCO [9], Pascal VOC [10], and 

ImageNet [11]. 

 

The Common Objects in Context (COCO) [9] dataset is one of the most widely used 

datasets for object detection. It contains more than 330,000 images with more than 2.5 

million object instances labeled across 80 categories. The images in COCO are taken 

from complex scenes with a diverse range of objects, making it a challenging dataset for 

object detection. The dataset is split into three sets: train, validation, and test sets. The 

train set contains 118,287 images, the validation set contains 5,000 images, and the test 

set contains 40,000 images. The annotations for COCO include bounding boxes and 

segmentation masks for each object instance, as well as labels for each object category. 

 

The Pascal VOC (Visual Object Classes) [10] dataset is another popular dataset for object 

detection. It was introduced in 2005 and has been used as a benchmark dataset for object 

detection ever since. The dataset contains images from 20 different object categories, 

including animals, vehicles, and household objects. The dataset is split into three sets: 

train, validation, and test sets. The train set contains around 5,000 images, the validation 

set contains around 5,000 images, and the test set contains around 5,000 images. The 

annotations for Pascal VOC include bounding boxes for each object instance, as well as 

labels for each object category. 

 

ImageNet [11] is a large-scale image database with more than 14 million labeled images 

across 20,000 categories. It was introduced in 2009 and has been used for various 

computer vision tasks, including object detection. However, it is not specifically 

designed for object detection, and the annotations for object detection are only available 

for a subset of the images. The ImageNet detection challenge is a subtask of the 



ImageNet challenge, where the goal is to detect objects in a set of 200 categories. The 

dataset is split into train and validation sets, with 1.2 million and 50,000 images, 

respectively. 

 

Apart from these datasets, there are other datasets that have been introduced for specific 

object detection tasks. For example, the KITTI dataset contains images and annotations 

for detecting objects in autonomous driving scenarios, including cars, pedestrians, and 

cyclists. The dataset includes around 7,500 images for training and testing, with 

annotations for each object instance. 

 

Evaluating object detectors 

Object detectors use multiple criteria to measure the performance. The most common 

evaluation metric is mean Average Precision (mAP).  

First, we define the Intersection over Union (IoU), which is the ratio of the area of 

overlap and the area of union between the ground truth and the predicted bounding box 

(see Figure 2). A threshold is set to determine if the detection is correct (usually 0.5 or 

higher). If the IoU is more than the threshold, it is classified as True Positive while an 

IoU below it is classified as False Positive. If the model fails to detect an object present 

in the ground truth, it is termed as False Negative. 

 

 

 

Precision measures the percentage of correct predictions while the recall measures the 

correct predictions with respect to the ground truth.  

 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
 

Figure  2 : Intersection over union definition and illustration. 



 

Based on the above equation, average precision (AP) is computed separately for each 

class. To compare performance between the detectors, the mean of average precision of 

all classes, called mean average precision (mAP) is used, which acts as a single metric 

for final evaluation. 

 

Another commonly used evaluation metric is the F1-score, which is the harmonic mean 

of precision and recall. The F1-score provides a single number that balances the trade-

off between precision and recall. 

  



2. Foundational Approaches to Object Detection 

Classical methods for object detection 

HOG 

Histogram of Oriented Gradients (HOG) [2] is a feature descriptor that is used for object 

detection. HOG extracts the shape and texture features of an object by computing the 

gradients of an image. It works by dividing the image into small cells and computing the 

histogram of gradient orientations in each cell. The HOG descriptor then concatenates 

the histograms of the cells in a block-wise fashion to form a feature vector that can be 

used for object detection. 

 

HOG was first introduced by Navneet Dalal and Bill Triggs in 2005 as a method to detect 

pedestrians in images. It has since been used for many other object detection tasks such 

as face detection, vehicle detection, and animal detection. 

The HOG feature extraction process involves several steps. First, the image is converted 

to grayscale and smoothed using a Gaussian filter to reduce noise. Then, the gradients 

of the image are computed using the Sobel operator, which is a simple edge detection 

filter. The gradient magnitudes and orientations are then computed for each pixel in the 

image (Figure 3). 

 

Next, the image is divided into small cells, typically 8x8 pixels, and the gradient 

orientations within each cell are quantized into several bins. The most common binning 

scheme uses 9 bins covering a range of 0 to 180 degrees. The gradient magnitudes are 

weighted by their corresponding gradient orientations and accumulated into the 

histogram bins. 

 

Figure  3 : HOG detector. The RGB patch and gradients represented using arrows. 



To increase robustness to lighting and contrast changes, the HOG descriptor also 

includes normalization steps. First, the histograms within each cell are normalized using 

a block-wise normalization scheme. Each block contains a fixed number of cells and 

overlaps with adjacent blocks. The histograms within each block are concatenated into 

a single feature vector and then normalized to have unit L2 norm. This normalization 

step ensures that the descriptor is invariant to small changes in lighting and contrast. 

Finally, the HOG descriptor is used as input to a machine learning algorithm such as a 

support vector machine (SVM) for object detection. The SVM learns a decision 

boundary between positive and negative examples in the feature space, which can be 

used to classify new images. 

 

While HOG was a significant improvement over earlier feature extraction methods such 

as SIFT and SURF, it has since been largely supplanted by convolutional neural 

networks (CNNs) for object detection. 

 

Viola-Jones 

The Viola-Jones algorithm [1] is a classic approach for object detection that uses Haar-

like features and a machine learning-based approach to detect objects in an image. The 

algorithm works by scanning an image with a sliding window, and for each window, 

computing a set of features that describe the image content. These features are computed 

using Haar-like features, which are rectangular features that compute the difference 

between the sum of the pixel intensities in two or more adjacent rectangles. 

 

The algorithm then applies a simple machine learning algorithm, called AdaBoost, to 

select a small number of the most relevant features and use them to classify the object in 

the image. AdaBoost is a boosting algorithm that iteratively selects the best features and 

trains a weak classifier on these features. The final classifier is a combination of these 

weak classifiers. 

 

Viola-Jones is known for its fast speed and good accuracy on face detection tasks. 

However, it has some limitations, such as being sensitive to illumination changes and 

being less effective on complex and cluttered scenes. The algorithm also requires careful 

tuning of its parameters to achieve good performance. 

Overall, Viola-Jones was a significant contribution to the field of object detection, 

paving the way for modern approaches based on deep learning. 

 



Convolutional neural networks 

Introduction to CNNs 

Convolutional Neural Networks (CNNs) are a type of neural network that has been 

widely used in computer vision tasks, including object detection. CNNs are inspired by 

the visual cortex of animals, which is known to be highly efficient in detecting visual 

patterns. The basic idea of a CNN is to learn a set of filters that can extract meaningful 

features from the input image and use these features to make predictions. 

 

The input to a CNN is typically an image, represented as a 3D tensor of pixel values 

(height x width x channels). The first layer of a CNN is a convolutional layer, which 

applies a set of learnable filters to the input image. Each filter is a small matrix of weights 

that slides over the input image, performing a dot product between the filter and the 

image pixels at each location. This operation produces a feature map, which highlights 

the presence of a certain pattern in the input image. 

 

The convolutional layer is followed by a non-linear activation function, such as the 

Rectified Linear Unit (ReLU). The ReLU function sets all negative values in the feature 

map to zero, while leaving positive values unchanged. This operation introduces non-

linearity to the network, allowing it to learn more complex patterns. 

 

After the activation function, the feature map is usually downsampled using a pooling 

layer, which reduces the spatial dimensions of the feature map while preserving the most 

important information. The most common pooling operations are max pooling, which 

takes the maximum value in each pooling region, and stride convolution, which applies 

in the convolution operation within skips. 

 

The process of convolution, activation, and pooling is repeated multiple times, forming 

a deep network of feature extractors. For image classification task, the final layers of the 

network are typically fully connected layers, which take the output of the convolutional 

layers and use it to make classification prediction. In the case of object detection, the 

fully connected layers are usually connected to a set of output nodes that correspond to 

the possible object classes, and the network outputs the class probabilities and bounding 

box coordinates for each object in the image. 

 

One of the main advantages of CNNs is their ability to learn hierarchical representations 

of the input image, starting from low-level features such as edges and corners, and 

gradually building up to high-level concepts such as object parts and textures. This 



allows the network to capture both local and global context, making it robust to 

variations in object appearance and occlusions. 

 

CNNs have achieved remarkable success in object detection, outperforming traditional 

hand-crafted feature extractors such as HOG and Viola-Jones. CNN-based object 

detectors have been used in a variety of applications, including autonomous driving, 

surveillance, and robotics. 

 

In the next section, we will dive deeper into the components of a CNN, including 

convolutional layers, pooling layers, activation functions, and popular CNN 

architectures. 

 

Basic components of CNNs 

Convolutional layers 

Convolutional layers are the building blocks of a CNN. They are designed to detect local 

patterns or features in the input data by performing a mathematical operation known as 

convolution. Convolutional layers consist of a set of learnable filters or kernels, which 

are small matrices that slide over the input data and perform element-wise multiplication 

with the local region of the input that they are currently aligned with. The result of the 

convolution operation is a single value that represents the degree of similarity between 

the filter and the input region (see Figure 4). This process is repeated for every possible 

local region in the input data, resulting in a 2D output feature map. 

 

Convolutional layers have several important properties that make them well-suited for 

image classification and object detection tasks. First, they can capture spatial 

relationships between adjacent pixels, which is important for identifying patterns in 

images. Second, they can learn local, translation-invariant features that can be reused 

across the entire image. Finally, by stacking multiple convolutional layers together, 

CNNs are able to learn increasingly complex features and patterns. 

 

One important consideration when designing convolutional layers is the size of the 

filters. Smaller filters are able to capture more fine-grained details in the input data but 

may be prone to overfitting. Larger filters can capture more global patterns in the data 

but may not be as effective at capturing local features.  

 

Another important parameter is the stride, which determines the step size at which the 

filters move over the input data. A larger stride results in a smaller output feature map 

and a reduction in computational complexity but may also result in a loss of information. 



Overall, convolutional layers are a powerful tool for learning feature representations in 

image data and are a key component of modern CNN architectures. 

 

 

Figure 4: A 3X3 convolution operator illustrated. 

 

Down-sampling methods: Pooling and Stride 

There are two common approaches for down-sampling feature maps in convolutional 

neural networks: pooling and stride. 

Pooling (see Figure 5) involves dividing the feature map into non-overlapping regions 

and computing a summary statistic for each region, such as the maximum value (max 

pooling) or the average value (average pooling). Pooling reduces the spatial resolution 

of the feature map, while keeping the number of channels constant. One advantage of 

pooling is that it introduces a degree of translation invariance by effectively 

summarizing the presence of a feature in each region rather than its exact location. 

However, pooling can also result in loss of information, especially for small objects or 

fine-grained features. Moreover, pooling is typically applied independently to each 



channel, which can lead to poor performance when different channels contain 

complementary information. 

 

 

Figure 5: The pooling operation. In max pooling (left) the highest value is take while in average 

pooling (right) the average of the pixels is calculated. 

 

Stride involves convolving the input feature map with a filter with a larger stride (i.e., 

the step size between adjacent filter positions) than 1. This results in a down-sampled 

output feature map with a smaller spatial resolution and a reduced number of channels 

(See Figure 6). Stride preserves more spatial information than pooling since each output 

pixel corresponds to a convolutional kernel centered at a particular location in the input 

feature map. Stride also allows for more flexible control over the down-sampling factor 

and can be combined with other convolutional operations, such as dilated convolution, 

to capture multi-scale information. 



 

Figure 6: Stride illustrated. Convolution is applied with skipping, which results a downscaled 

image. 

 

Activation functions 

Activation functions are a critical component of convolutional neural networks (CNNs). 

They introduce non-linearity, which is necessary to model complex non-linear 

relationships between the inputs and outputs of a network. Without activation functions, 

the network would be limited to linear transformations, and hence would be less 

powerful in representing complex patterns and relationships. 

 

There are several activation functions that can be used in CNNs. Some of the earlier ones 

include the sigmoid and tanh functions, which were commonly used in the past but have 

fallen out of favor in recent years due to some of their limitations. These functions have 

a range between 0 and 1 or -1 and 1, respectively, which can cause gradients to vanish 

during backpropagation. This means that the network can become difficult to train as the 

updates to the weights become smaller and smaller. 

 

In contrast, the rectified linear unit (ReLU) activation function has become the most 

popular choice in recent years due to its simplicity and effectiveness. The ReLU function 

outputs the input value if it is positive, and 0 otherwise (see Figure 7). This function is 

much faster to compute than sigmoid and tanh, and has a much larger range of positive 

values, making it less prone to gradient vanishing. Additionally, the sparsity induced by 

ReLU has been shown to help with regularization, reducing overfitting and improving 

generalization. 

 



Despite its popularity, ReLU does have some limitations. The most prominent issue is 

the problem of "dead" neurons, where the output of a neuron is always zero due to a 

negative bias. This can cause a loss of representational power and reduce the 

effectiveness of the network. To address this issue, several variants of ReLU have been 

proposed, such as leaky ReLU, which adds a small positive slope to the negative region, 

and exponential linear units (ELUs), which provide a smooth transition between the 

negative and positive regions. 

 

 

Figure 7: The ReLU function. Values bellow zero are mapped to zero, while values greater than 

zero aren’t changed. 

  

Fully connected layers 

Fully connected layers (also known as dense layers) are used in neural networks to 

connect every neuron in one layer to every neuron in the next layer (see Figure 8). In 

CNNs, fully connected layers are typically used at the end of the network to produce the 

final output, such as the class probabilities in a classification task. 

 

Fully connected layers are similar to the traditional Convolutional neural networks in 

that every neuron in one layer is connected to every neuron in the next layer. However, 

they lack the spatial invariance property that convolutional layers provide, since the 

weights are not shared across spatial positions. This means that fully connected layers 

require a large number of parameters, which can lead to overfitting and make the 

network difficult to train. 

 

To address this issue, many CNN architectures use a combination of convolutional and 

fully connected layers, with the fully connected layers placed at the end of the network. 

The output of the last convolutional layer is typically flattened and fed into the fully 

connected layers, which produce the final output. 

 

While fully connected layers have some disadvantages, they can still be useful in certain 

situations, such as when dealing with small input sizes or when the spatial structure of 



the data is not important. However, in most cases, using a combination of convolutional 

and fully connected layers is the preferred approach. 

 

Figure 8: Fully connected layer. Every neuron is connected to the next layer by a dedicated 

learned weight. 

 

Common CNN architectures 

Convolutional Neural Networks (CNNs) have been widely used for image classification 

tasks, with many notable architectures developed over the years. While classification 

and object detection are different tasks, the underlying CNN architecture is similar for 

both. Understanding the evolution of CNNs for classification can provide insights into 

the development of CNNs for object detection, which we will discuss in the next section. 

In this section, we'll explore some of the most prominent CNN architectures designed 

for classification tasks. 

 

LeNet-5 

LeNet-5 [13], developed by Yann LeCun et al. in 1998, is one of the earliest CNN 

architectures for image classification. It consists of two convolutional layers followed 

by two fully connected layers. LeNet-5 was designed to classify handwritten digits from 

the MNIST dataset, achieving an error rate of 0.95% at the time. 

 

AlexNet 

AlexNet [14], developed by Alex Krizhevsky et al. in 2012, is a more complex CNN 

architecture that consists of eight layers, including five convolutional layers and three 

fully connected layers (see Figure 9). It was the first CNN architecture to win the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, achieving an 



error rate of 15.3%, which was a significant improvement over the previous best result 

of 26.2%. 

 

 

Figure 9: AlexNet architecture. 5 layers of convolutions are followed by three dense layers. 

 

VGGNet 

VGGNet [15], developed by Karen Simonyan and Andrew Zisserman in 2014, is a deeper 

and more complex CNN architecture than AlexNet. It consists of up to 19 layers, with 

most of them being 3x3 convolutional layers (See Figure 10). VGGNet achieved 

impressive performance on the ILSVRC, with a top-5 error rate of 7.3%. 

 

Figure 10: VGG architecture. Deeper and more complex than older architectures. 

 

GoogLeNet/Inception 

GoogLeNet [16], developed by Christian Szegedy et al. at Google in 2014, introduced the 

Inception module, which allowed for more efficient and effective use of convolutional 



layers (See Figure 11). The GoogLeNet architecture consists of 22 layers and achieved a 

top-5 error rate of 6.7% on the ILSVRC. 

 

Figure 11: GoogleNet architecture. Improving the SOTA performence a bit more. 

 

ResNet 

ResNet [17], developed by Kaiming He et al. at Microsoft Research in 2015, introduced 

the concept of residual connections (see Figure 12), allowing for deeper CNN 

architectures to be trained more effectively and address the vanishing gradient problem.  

ResNet consists of up to 152 layers and achieved a top-5 error rate of 3.6% on the 

ILSVRC, which was a significant improvement over previous architectures. 

 

 

Figure 12: A residual block. input of first layer is connected also to a deeper layer. 

 

Summary 

These architectures are all designed for image classification tasks, and each one has its 

unique strengths and weaknesses. While LeNet-5 is a simple architecture that was the 

first to demonstrate the effectiveness of CNNs, ResNet is currently one of the most 

powerful architectures due to its ability to train very deep networks. 

 

In the next section, we'll discuss CNN architectures designed specifically for object 

detection tasks, which build upon and extend the foundational principles and techniques 

we discussed earlier. 

 



State-of-the-art object detection frameworks 

In the previous section, we explored the basic components of convolutional neural 

networks (CNNs) and discussed some of the most common CNN architectures, such as 

AlexNet, VGG, and ResNet. While these models have achieved significant success in 

image classification tasks, they are not specifically designed for object detection. In 

recent years, state-of-the-art object detection frameworks have emerged that build upon 

the foundations laid by these CNN architectures. 

 

In this section, we will explore some of the most advanced object detection frameworks 

available today. These models can detect objects in complex images with remarkable 

accuracy and speed. We will start by discussing two-stage object detection frameworks, 

which include region-based CNNs and their variants such as Fast R-CNN and Faster R-

CNN. We will then explore one-stage detectors, including You Only Look Once 

(YOLO) and its various iterations. Finally, we will discuss some recent advancements in 

object detection, including detectors based on feature pyramid networks (FPN). 

 

Two-stage Detectors 

Two-stage detectors, also known as region-based detectors, are generally follow a two-

step procedure: first, they generate region proposals, and then they classify the proposals 

as either object or background. 

 

Region-based CNN (RCNN) [3] was the first two-stage object detection framework that 

introduced the concept of region proposals. The RCNN model proposes regions of 

interest (ROIs) using a selective search algorithm, which generates a large number of 

candidate regions from an image. The selective search algorithm is used to propose 

potential object locations and generate region proposals. These proposals are then 

warped to a fixed size and passed through a convolutional neural network (CNN) to 

extract features. The extracted features are then used for classification and bounding box 

regression (see Figure 13). Despite its success, RCNN is computationally expensive, 

with a slow training and testing time, making it impractical for real-time applications. 

 



 

Figure 13: RCNN stages. First, we get the proposals by selective search, then, for each patch - 

Extract CNN features, and finally classify. 

 

Fast R-CNN was introduced as an improvement over RCNN, where the region proposals 

are generated from feature maps instead of the input image, making it faster than RCNN 

(see Figure 14). Fast R-CNN first passes the entire image through a CNN, which 

generates feature maps. Then, region proposals are generated using selective search 

from these feature maps. Finally, the region proposals are pooled into a fixed-size 

feature map and passed through a fully connected layer for classification and bounding 

box regression. Experiment results showed that Fast R-CNN had 66.9% mAP while R-

CNN of 66.0% on PASCAL VOC 2007 dataset and inference time is about 200 times 

faster. 

 

 

Figure 14: Fast RCNN. The main difference from RCNN is the proposals are generated from a 

downscaled feature map. 

 

Faster R-CNN is an extension of Fast R-CNN that replaces the selective search 

algorithm with a region proposal network (RPN) to generate region proposals. RPN is a 

small CNN that takes the feature maps generated from the input image as input and 

outputs region proposals. The RPN generates region proposals using anchor boxes, 



which are pre-defined bounding boxes with different scales and aspect ratios. Faster R-

CNN achieved state-of-the-art results with improved speed over RCNN and Fast R-

CNN (mAP of 69.9%, nearly 10 times lower inference time). 

 

One-stage Detectors 

You Only Look Once (YOLO) is a family of object detection models that belong to the 

one-stage detectors category. The first YOLO model was introduced in 2016 by Joseph 

Redmon et al. Since then, several variants of YOLO have been proposed, including 

YOLOv2, YOLOv3, and YOLOv4. In this section, we will discuss the key concepts and 

improvements introduced in each of these models. 

 

YOLOv1 was the first model in the YOLO family, and it proposed a new approach to 

object detection. Unlike traditional object detection methods, YOLOv1 used a single 

convolutional neural network to predict both the bounding boxes and the class 

probabilities for each object in the image. This made the model faster and more efficient 

than the two-stage detectors like RCNN. 

 

The architecture of YOLOv1 consists of a single convolutional neural network that takes 

the entire image as input and divides it into a grid of cells (see Figure 15). Each cell in 

the grid predicts a fixed number of bounding boxes and their corresponding class 

probabilities. The bounding boxes are represented by their x and y coordinates, height, 

and width, and they are normalized by the image size. The class probabilities are 

predicted using SoftMax, and they represent the probability of each object class for each 

bounding box. 

 

One of the key features of YOLOv1 was its ability to detect objects at different scales 

and aspect ratios. The model achieved this by using anchor boxes, which are predefined 

bounding boxes with different sizes and aspect ratios. The model learns to adjust the 

anchor boxes to better fit the objects in the image. 

 

While YOLOv1 was a significant improvement in terms of speed and efficiency, it had 

some limitations. One of the main limitations was its accuracy, especially for small 

objects. YOLOv1 also struggled with detecting overlapping objects and objects with 

complex shapes. 

 

YOLOv2 was introduced in 2017 and addressed some of the limitations of YOLOv1. The 

main improvement introduced in YOLOv2 was the use of a new architecture called 

Darknet-19. Darknet-19 was designed specifically for object detection and achieved 

better accuracy than the previous architecture used in YOLOv1. 



Another improvement introduced in YOLOv2 was the use of batch normalization. Batch 

normalization is a technique that helps the model converge faster by normalizing the 

input to each layer. YOLOv2 also used a technique called anchor box clustering to better 

predict the anchor boxes for each object. 

 

YOLOv2 also introduced a new training technique called multi-scale training. This 

technique involved training the model on images at different scales and then combining 

the predictions to improve accuracy. YOLOv2 also used a new loss function that 

combined localization and classification losses, which improved the accuracy of the 

model. 

 

YOLOv3 was released in 2018 and introduced significant improvements over its 

predecessors. It introduced several modifications to the original YOLO architecture that 

improved its accuracy and speed, including feature pyramid networks (FPNs) and 

shortcut connections. 

 

FPNs allow for multi-scale feature extraction, which means that objects of different 

sizes can be detected more effectively. FPNs are essentially a set of convolutional layers 

that extract features at different scales, and then combine them to produce a set of feature 

maps that are used to predict the final bounding boxes and class labels. 

 

Shortcut connections, also known as skip connections, allow for the direct flow of 

information between layers that are far apart in the network architecture. This can help 

to mitigate the problem of information loss that occurs in very deep neural networks. 

 

YOLOv3 was further improved in 2020 with the release of YOLOv4. This version 

introduced a number of additional improvements, including a more complex backbone 

network, advanced data augmentation techniques, and a more accurate loss function. 

The backbone network used in YOLOv4 is the CSPDarknet-53, which is a modified 

version of the Darknet-53 backbone used in YOLOv3. The CSPDarknet-53 architecture 

reduces the computational cost of the network by using cross-stage partial connections, 

which connect the early and late stages of the network. 

 

In addition to the improvements in the backbone network, YOLOv4 also introduced a 

number of data augmentation techniques that help to improve the accuracy of the model. 

These techniques include mosaic data augmentation, which involves combining 

multiple images into a single training image, and cutout data augmentation, which 

randomly removes a portion of the image during training. 



Finally, YOLOv4 introduced a new loss function called the focal loss, which is designed 

to address the problem of class imbalance in object detection datasets. The focal loss 

assigns higher weights to hard examples (i.e., examples that are misclassified by the 

network with high confidence) and lower weights to easy examples (i.e., examples that 

are correctly classified by the network with high confidence). 

 

Overall, YOLO and its variants have made significant contributions to the field of object 

detection, by introducing highly efficient and accurate object detection frameworks that 

can operate in real-time.  

These models have enabled a wide range of applications, including autonomous driving, 

robotics, and surveillance systems. 

 

 

Figure 15: YOLO architecture in details and in high level. 

 

Post processing 

It's important to note that the object detection frameworks we've discussed so far often 

require post-processing techniques to refine their output. One common technique is non-

maximum suppression (NMS) [12], which is used to remove duplicate detections and 

improve the accuracy of the final output. 



During inference, the detection framework generates multiple candidates bounding 

boxes for each object in the image. However, since the model is not perfect, some of 

these boxes may be inaccurate and overlapping. NMS is applied to these candidate boxes 

to remove duplicates and retain only the most confident detections. 

 

The NMS algorithm works by first sorting the candidate boxes based on their confidence 

scores (i.e., the probability that the box contains an object). It then starts with the box 

with the highest confidence score and iterates over the remaining boxes to check if they 

overlap significantly with the current box. If the overlap is above a certain threshold 

(e.g., 0.5), the box is discarded, otherwise, it is kept as a valid detection (see Figure 16). 

The gap between the loss function used to optimize the network output and the 

evaluation metrics used to measure the performance of object detection models is one of 

the reasons why post-processing methods like NMS can introduce some inaccuracy. 

While the loss function is designed to directly optimize the network output, the 

evaluation metrics are calculated after the post-processing step. Therefore, post-

processing methods are often heuristic and hand-crafted, and may not perfectly align 

with the ultimate goal of the network. This misalignment can lead to a gap between the 

optimized network output and the evaluation metrics, resulting in some inaccuracies in 

the final predictions. 

 

Figure 16: non maximum suppression (NMS). Overlapping boxes are being suppresssed so only 

one box (with the highest confidence) survives 

 

Transformers 

Introduction to transformers 

Transformers have emerged as a powerful class of models in various domains, including 

natural language processing (NLP) and computer vision. Originally introduced for NLP 

tasks, transformers have shown great potential in solving complex problems that require 

modeling long-range dependencies and capturing global context. In recent years, they 

have gained significant attention and have been successfully applied to computer vision 

tasks, including object detection. 



At the heart of transformers lies their ability to leverage self-attention mechanisms, 

which enable the models to attend to different parts of the input sequence and capture 

meaningful relationships. This attention mechanism allows the model to assign varying 

weights to different positions, emphasizing more important information and effectively 

modeling interactions between elements. This capability is particularly advantageous in 

tasks such as object detection, where capturing contextual information and 

understanding object relationships are crucial. 

 

One of the key benefits of transformers in object detection is their ability to process the 

entire image in parallel, unlike traditional convolutional neural networks (CNNs) that 

rely on sequential processing and hierarchical feature extraction. By considering the 

global context of the image, transformers can potentially capture long-range 

dependencies and learn more comprehensive representations. This global perspective is 

especially valuable for object detection, where objects may appear at various scales and 

locations within the image. 

 

Another advantage of transformers is their capacity to capture rich semantic 

information. While CNNs excel at capturing low-level visual features, transformers 

offer a more abstract representation by modeling higher-level semantics. This semantic 

understanding allows transformers to reason about object classes, relationships, and 

attributes, leading to more accurate object detection. 

 

In the context of object detection, transformers have been successfully applied as 

backbone architectures or as complete end-to-end solutions. Vision transformers (ViTs) 

have gained prominence as a specific class of transformers designed for image-based 

tasks. ViTs typically divide the image into fixed-size patches and flatten them into a 

sequence of tokens, which are then processed by the transformer layers. This approach 

allows transformers to handle images of arbitrary sizes and facilitates parallel 

processing. 

 

The next sections will delve into the key components of transformers, including the self-

attention mechanism, multi-head attention, and the architecture of transformer encoders. 

The Transformer block is summarized and illustrated in Figure 17. 



 

Figure 17: The transformer block architecture. Embedded input in connected to positional 

encoder and sent to the encoder. The encoder is built of Multi head attention and feed forward 

layers followed by normalization layers. Encoder output is then used by the decoder, which 

uses cross attention mechanism to output probabilities after a linear layer. 

Self-attention mechanism 

The self-attention mechanism is a crucial component of transformers and plays a 

fundamental role in capturing relationships between different elements within a 

sequence. In the context of vision transformers, self-attention allows the model to 

capture long-range dependencies and spatial relationships between image patches. 

 

At its core, the self-attention mechanism calculates the importance or relevance of each 

element in a sequence to all other elements. In the case of vision transformers, the input 

sequence is typically a set of image patches. The self-attention mechanism computes 

attention weights for each patch, determining how much attention should be given to 

other patches when encoding the representation of a particular patch. 

 

To understand how self-attention works, let's consider a simplified example. Suppose 

we have an input sequence of image patches, where each patch is represented as a feature 

vector. For each patch, the self-attention mechanism learns to assign weights to all other 

patches based on their similarity. The similarity is measured by computing dot products 

between feature vectors followed by a SoftMax operation to obtain normalized attention 

weights. 



 

These attention weights indicate the importance of each patch in relation to other 

patches. Higher weights imply stronger connections, while lower weights suggest 

weaker connections. The self-attention mechanism then combines the weighted 

representations of all patches, producing a context-aware representation for each patch 

that considers the information from the entire sequence. 

 

The advantage of self-attention in vision transformers is its ability to capture both local 

and global relationships. Unlike convolutional layers, which have fixed receptive fields, 

self-attention can consider long-range dependencies between patches. This enables the 

model to capture fine-grained details and capture context across the entire image, 

leading to improved performance in tasks such as image classification and object 

detection. 

 

It's important to note that the self-attention mechanism is computationally intensive, 

especially when applied to large input sequences. To address this, various techniques 

have been proposed, such as using approximate or sparse attention patterns, to reduce 

the computational complexity while still maintaining the effectiveness of the self-

attention mechanism. 

 

Overall, the self-attention mechanism is a powerful tool in vision transformers, allowing 

them to model complex relationships and dependencies within image patches. By 

leveraging self-attention, vision transformers can capture both local and global 

information, enabling them to excel in a wide range of computer vision tasks, including 

object detection, image segmentation, and image classification. 

 

Multi-head attention 

Multi-head attention is an extension of the self-attention mechanism that allows 

transformers to capture different types of relationships and attend to multiple aspects of 

the input sequence simultaneously. It enhances the expressive power of the model by 

enabling it to learn different representations and capture diverse patterns. 

 

In a multi-head attention mechanism, the input sequence is divided into multiple subsets, 

or "heads," and each head performs its own self-attention calculation. Each head learns 

a distinct set of attention weights, allowing the model to attend to different parts of the 

input sequence and capture different types of information. 

 

The key idea behind multi-head attention is to provide the model with the flexibility to 

attend to different positions and learn diverse representations. By incorporating multiple 



heads, the model can capture both local and global dependencies, as well as capture 

different types of relationships within the input sequence. 

 

To compute multi-head attention, the input sequence is linearly projected into multiple 

subspaces, with each subspace associated with a separate head. The self-attention 

mechanism is then applied independently to each subspace, generating attention weights 

and weighted representations. These weighted representations from each head are then 

concatenated and linearly transformed to produce the final output. 

 

The benefits of multi-head attention are twofold. First, it enables the model to capture 

different types of relationships and attend to different parts of the input sequence 

simultaneously. This allows the model to effectively capture both local and global 

dependencies, capturing fine-grained details while maintaining a broader context. 

Second, it provides a mechanism for the model to learn diverse representations, as each 

head learns its own set of attention weights. This promotes model robustness and 

enhances its ability to capture various patterns and features. 

 

In the context of vision transformers, multi-head attention plays a crucial role in 

enabling the model to capture complex visual relationships and dependencies. It allows 

the model to attend to different image patches, capture both local and global spatial 

information, and learn diverse representations that are beneficial for visual 

understanding and analysis. 

 

It's worth noting that the number of heads in multi-head attention is a hyperparameter 

that can be tuned. Increasing the number of heads allows the model to capture more fine-

grained relationships but comes at the cost of increased computational complexity. 

Balancing the number of heads is important to ensure a good trade-off between model 

performance and computational efficiency. 

 

In summary, multi-head attention is a key component of transformers that enhances their 

ability to capture diverse relationships and attend to different aspects of the input 

sequence. By incorporating multiple heads, transformers can capture both local and 

global dependencies, learn diverse representations, and effectively model complex 

patterns. In the context of vision transformers, multi-head attention plays a vital role in 

enabling the models to understand and interpret visual information for tasks such as 

image classification and object detection. 

 



Transformer encoder architecture 

The Transformer encoder is a crucial component of the Transformer architecture, 

responsible for processing the input data and capturing contextual information. It 

consists of several layers of self-attention and feed-forward neural networks. Unlike 

traditional convolutional neural networks, the Transformer encoder does not rely on any 

convolutional or pooling operations, making it highly parallelizable and capable of 

capturing long-range dependencies effectively. 

 

Positional Encoding: 

One unique aspect of the Transformer encoder is the use of positional encoding. Since 

the model does not have any inherent notion of order or position in the input sequence, 

positional encoding is added to convey the relative positions of tokens. This encoding 

enables the model to capture the sequential information crucial for tasks like natural 

language processing and image understanding. 

 

The positional encoding is typically added as a fixed representation to the input 

embeddings. It consists of a set of sinusoidal functions of different frequencies and 

phases, allowing the model to learn the relative positions of the tokens based on these 

embeddings. By incorporating positional encoding, the Transformer encoder can 

distinguish between tokens based on their position in the input sequence, enriching the 

model's understanding of sequential information. 

 

Self-Attention: 

Within each layer of the Transformer encoder, self-attention plays a vital role in 

capturing the relationships between different tokens in the input sequence. Self-attention 

allows each token to attend to all other tokens in the sequence, and the model learns to 

assign different weights or importance to different tokens based on their relevance for 

the given task. This mechanism enables the model to capture long-range dependencies 

and contextual information effectively. 

 

Feed-Forward Neural Network: 

In addition to self-attention, each layer of the Transformer encoder incorporates a feed-

forward neural network. This network consists of two linear transformations with a non-

linear activation function in between. The feed-forward neural network helps the model 

capture complex, non-linear relationships between tokens and enables the encoder to 

transform the representations learned from self-attention into more expressive and 

higher-dimensional representations. Layer normalization is applied after each sub-layer 

in the encoder, including the self-attention and the feed-forward sub-layers. 

 



Layer normalization: 

Layer normalization is a technique that normalizes the activations of each layer 

independently. It helps address the issue of internal covariate shift by reducing the 

distribution shift across the features of the layer. By normalizing the inputs to each layer, 

layer normalization helps stabilize the learning process and improves the gradient flow 

during training. 

 

The layer normalization operation computes the mean and variance of the input 

activations along the feature dimension and then normalizes the activations using these 

statistics. It introduces learnable scale and shift parameters that allow the model to adapt 

the normalized activations to the specific requirements of the task. 

By incorporating layer normalization in the Transformer encoder, the model benefits 

from improved stability and convergence during training. It helps alleviate the vanishing 

gradient problem and allows for more efficient learning. 

 

 

The combination of self-attention and feed-forward neural networks in the Transformer 

encoder allows the model to process the input sequence iteratively, layer by layer, 

gradually capturing more intricate relationships and generating enriched representations 

of the input data. These representations are then passed on to the Transformer decoder 

for further processing and generation. 

 

Transformer decoder architecture 

The Transformer decoder is responsible for generating the output sequence based on the 

information processed by the Transformer encoder. It receives the encoded 

representations from the encoder and utilizes self-attention and cross-attention 

mechanisms to generate contextualized representations and make predictions. 

 

Self-Attention in the Decoder: 

Similar to the Transformer encoder, the decoder also employs self-attention 

mechanisms to capture the relationships between different positions within the output 

sequence. The self-attention mechanism allows each position in the output sequence to 

attend to all other positions, enabling the decoder to incorporate relevant context and 

generate accurate predictions. 

 

However, there is a slight modification in the self-attention mechanism of the decoder 

compared to the encoder. The self-attention in the decoder is masked to ensure that 

positions attending to future positions are ignored during the prediction process. This 

masking prevents the decoder from relying on future information that it should not have 



access to at each decoding step, ensuring autoregressive behavior in generating the 

output sequence. 

 

Cross-Attention with Encoder Output: 

In addition to self-attention, the decoder also employs cross-attention with the output of 

the encoder. This cross-attention mechanism allows the decoder to attend to the encoded 

representations from the encoder and incorporate relevant information from the input 

sequence. By attending to different positions in the encoder output, the decoder can align 

the generated output sequence with the input sequence, enhancing the coherence and 

quality of the predictions. 

 

Similar to the self-attention mechanism, the cross-attention in the decoder is also 

masked to avoid attending to future positions. The masking ensures that the decoder 

attends to only the relevant positions in the encoder output based on the decoding step, 

preventing information leakage from future positions. 

 

Positional Encoding in the Decoder: 

Just like the encoder, the decoder also utilizes positional encoding to convey the relative 

positions of tokens in the output sequence. The positional encoding helps the decoder 

understand the sequential information and generate the output tokens in the correct 

order. 

 

Through the combination of self-attention, cross-attention, and positional encoding, the 

Transformer decoder can effectively generate the output sequence based on the encoded 

representations from the encoder. The self-attention mechanisms enable the decoder to 

capture dependencies within the output sequence, while the cross-attention mechanisms 

allow the decoder to incorporate relevant information from the input sequence. This 

iterative process of attending and generating leads to the generation of coherent and 

contextually rich output sequences. 

 

It's important to note that the Transformer encoder and decoder work collaboratively, 

with the decoder attending to the encoder output at different positions and utilizing the 

encoded information to generate accurate predictions. This collaborative process forms 

the foundation of the Transformer architecture and its ability to capture long-range 

dependencies and generate high-quality output sequences. 

  



3. End to end object detection 

The traditional approaches to object detection often relied on multi-stage pipelines, 

where models performed region proposal generation followed by classification and 

bounding box refinement. However, these pipelines introduced complexities, such as 

manual feature engineering and heuristic post-processing steps, which hindered their 

efficiency and effectiveness. 

 

One of the major challenges with the traditional multi-stage approach was the need for 

post-processing steps, such as Non-Maximum Suppression (NMS), to filter and refine 

the detected bounding boxes. While these steps were necessary to remove duplicate and 

overlapping detections, they were additional components in the pipeline that required 

careful tuning and were prone to introducing inaccuracies. Moreover, these post-

processing steps were often not end-to-end trainable, meaning that the optimization 

process did not directly consider their performance. 

 

In addition to the challenges posed by post-processing steps, another critical issue arises 

when the output of the model is directly connected to the image space, particularly in 

models like YOLO. These models often divide the input image into a grid and assign 

bounding boxes to specific cells within the grid. While this approach allows for efficient 

detection, it can lead to challenges in assigning accurate labels to the predicted bounding 

boxes. 

 

The resolution of the output grid can pose difficulties when objects span multiple cells 

or are situated near cell boundaries. In such cases, it becomes challenging for the model 

to precisely assign the correct label to the predicted bounding boxes. This uncertainty in 

label assignment can result in the model outputting average predictions or struggling to 

precisely localize objects that are partially covered by multiple cells. 

To mitigate this issue, higher output resolution can be used, but the immanent problem 

remains for any chosen resolution, while the latency of the model increase.  

Another resolution was suggested in [31] by assigning outputs to labels with OTA 

(Optimal transport assignment) algorithm, which makes the matching between outputs 

and labels more flexible. This approach is very effective, but still does not fully mitigate 

resolution problems. 

 

To address these limitations, the concept of end-to-end object detection emerged as a 

promising approach. End-to-end solutions aim to tackle the object detection task 

holistically, optimizing the entire detection pipeline in a unified manner. By jointly 

optimizing the model's ability to generate accurate bounding boxes and classify objects, 

end-to-end approaches offer several advantages. 



 

Firstly, end-to-end object detection models eliminate the need for manual feature 

engineering. Instead, they learn hierarchical representations directly from the data, 

enabling more effective feature extraction and representation. This reduces the reliance 

on handcrafted features and allows the model to capture more intricate patterns and 

contextual information present in the images. 

 

Secondly, end-to-end models mitigate the issues associated with post-processing steps. 

By jointly optimizing the detection and classification components, these models can 

incorporate the post-processing logic within the network architecture itself. This 

integration allows for more precise control over the detection outputs and ensures that 

the entire system is trained and fine-tuned based on the desired evaluation metrics, such 

as mean Average Precision (mAP). 

 

Overall, the end-to-end approach revolutionizes object detection by providing a more 

streamlined and trainable solution. In the following sections, we will explore some of 

the notable end-to-end object detection models that have made significant contributions 

to the field. These models encompass a range of techniques, from incorporating 

transformers to novel architectural designs, and showcase the advancements achieved 

in the pursuit of accurate and efficient object detection. 

 

Before we delve into the details of DETR (Detection Transformer) and other concepts 

that have reshaped the landscape of end-to-end object detection, some related work is 

reviewed. 

 

Related work 

To achieve end-to-end detection, many approaches are explored in the previous 

literature.  

Concretely, in earlier research, numerous detection frameworks [19, 20, 21, 22, 23] based 

on recurrent neural networks attempt to produce a set of bounding boxes directly. 

Though they allow end-to-end learning in principle, they are only demonstrated 

effectiveness on some small datasets and not against the modern baselines. 

 

Several object detectors [28, 29] used the bipartite matching loss. However, in these 

early deep learning models, the relation between different prediction was modeled with 

convolutional or fully connected layers only and a hand-designed NMS post-processing 

can improve their performance. 



 

Learnable NMS methods [24, 25] and relation networks [27] explicitly model relations 

between different predictions with attention. Using direct set losses, they do not require 

any post-processing steps. However, these methods employ additional hand-crafted 

context features like proposal box coordinates to model relations between detections 

efficiently, while a real end-to-end approach look for solutions that reduce the prior 

knowledge encoded in the model.  

 

POTO [30] (Prediction-aware One-To-One) proposed a bipartite matching with 

architecture based only on convolutions, relaying on spatial prior. This approach is 

relatively cheap, but like in OTA [31] it gets into troubles trying to handle small and 

dense objects due to the dependency on output resolution. 

 

DETR 

DETR (Detection Transformer) [10] represents a paradigm shift in object detection, 

introducing a new approach that eliminates the need for handcrafted components such 

as anchor boxes and non-maximum suppression (NMS). Instead, it leverages the power 

of transformers, a powerful sequence modeling architecture originally introduced for 

natural language processing tasks, to directly predict objects and their locations in a 

single feed-forward pass. By adopting the transformer architecture, DETR has 

overcome several limitations of previous approaches and demonstrated remarkable 

performance improvements. 

 

One of the main advantages of DETR over YOLO-like models lies in its ability to handle 

variable numbers of objects without resorting to anchor boxes. Traditional detectors 

required anchor boxes to encode prior knowledge about object sizes and aspect ratios, 

which often introduced complexities in model training and limited their adaptability to 

objects with different scales. DETR, on the other hand, employs a transformer-based 

encoder-decoder structure that is inherently capable of handling varying object counts, 

enabling it to detect objects efficiently and accurately regardless of their sizes. 

 

Moreover, DETR introduces a novel concept called the "set prediction" formulation. 

Unlike YOLO-like models that predict objects at the grid level, DETR treats object 

detection as a set prediction problem. It models the entire image as a set of objects and 

uses transformer encoders to capture the global context and relationships between 

objects. This set-based approach allows DETR to generate predictions without the 



spatial constraints imposed by grid cells, resulting in more flexible and context-aware 

object detection. 

 

Additionally, DETR eliminates the need for post-processing techniques like NMS by 

formulating object detection as an optimization problem. By using bipartite matching 

and the Hungarian algorithm [26], DETR directly associates predicted bounding boxes 

with ground truth objects, avoiding the ambiguity and inefficiency introduced by NMS. 

This direct alignment simplifies the detection process, reduces the risk of duplicate 

detections, and enables a more accurate and reliable detection output. 

 

In the following sections, we will delve deeper into the components and mechanisms of 

DETR to understand its inner workings and explore its remarkable performance in 

various object detection benchmarks. The schematic architecture of DETR is shown in 

Figure 18. 

 

 

Figure 18: DETR uses a conventional CNN backbone to learn a 2D representation of an input 

image. The model flattens it and supplements it with a positional encoding before passing it 

into a transformer encoder. A transformer decoder then takes as input a small, fixed number of 

learned positional embeddings, which we call object queries, and additionally attends to the 

encoder output. Each output embedding of the decoder is passed to a shared feed forward 

network (FFN) that predicts either a detection (class and bounding box) or a “no object” class. 



 

Figure 19: The internal details of Transformers in DETR. Left – the encoder. Right – the 

decoder and prediction head. 

 

Architectural Components of DETR 

DETR introduces a novel architecture that combines the power of transformers with 

object detection. The model consists of four main components: the CNN backbone, the 

transformer-based encoder, the transformer-based decoder and finally – predictions 

head. Together, these components enable DETR to effectively encode and process 

visual information for accurate object detection. 

 

1. CNN Backbone: 

The CNN backbone in DETR plays a crucial role in extracting visual features from the 

input image. It typically consists of a convolutional neural network architecture, such as 

ResNet or VGG, that processes the image through a series of convolutional layers to 

extract high-level visual features. The backbone network serves as a feature extractor, 

transforming the raw image into a set of feature maps that capture important visual 

information. 

 



2. Transformer-Based Encoder (Figure 19 left): 

The transformer-based encoder is responsible for processing the output feature maps 

from the CNN backbone. It employs a stack of transformer layers to capture spatial 

relationships and learn contextual representations. The self-attention mechanism within 

the encoder allows the model to attend to relevant regions and incorporate global 

contextual information into the object detection process. By stacking multiple layers, 

the encoder progressively refines the representations and enables the model to reason 

about the objects' locations within the image. 

 

3. Transformer-Based Decoder (Figure 19 right): 

The transformer-based decoder takes the output of the encoder and performs object 

detection by predicting the class labels and bounding box coordinates for each object. 

The decoder utilizes another set of transformer layers to process the encoded features 

and generate object queries. These queries are then matched with the learned 

representations of the objects in the image to make predictions. 

 

4. Prediction Head: The prediction head is the final component of the DETR 

architecture. It takes the refined feature representations from the decoder and produces 

the final predictions for object detection. The prediction head typically consists of fully 

connected layers or additional convolutional layers, which map the representations to 

the desired output format. It outputs the bounding box coordinates and class 

probabilities for each detected object in the image, when one of the classes is "not 

object". 

 

In the next section, we will delve deeper into the object detection process in DETR, 

exploring how it performs set prediction using the transformer-based architecture. We 

will discuss the unique design choices, loss functions, and training procedures that 

contribute to DETR's impressive performance in object detection tasks. 

 

Object detection set prediction loss 

In DETR, the objective is to generate a fixed-size set of predictions, referred to as N, in 

a single pass through the decoder. It is important to note that N is deliberately set to be 

larger than the expected number of objects typically present in an image. During 

training, one of the key challenges is to accurately score the predicted objects based on 

their class, position, and size relative to the ground truth. 

 

To address this challenge, DETR utilizes a loss function that facilitates an optimal 

bipartite matching between the predicted objects and the ground truth objects. This 

matching process helps establish the best correspondence between the predicted and 



ground truth objects. By optimizing this matching, DETR can effectively determine the 

object-specific losses, particularly those related to the bounding box predictions. 

 

Bipartite matching 

Let y be the set of ground truth set of objects (padded with "not object" labels to size N), 

and   �̂� =  {𝑦�̂� }𝑖=1
𝑁  the set of the predictions (prediction head's output). 

We would like to find a bipartite matching between these two sets, which is formulated 

as a permutation f the predictions, π, that minimizes some cost function: 

 

(1)   �̂� =    
𝑎𝑟𝑔𝑚𝑖𝑛

𝜋𝜖𝛱𝑁
( ∑ 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑡(𝑦𝑖 , �̂�𝜋(𝑖) )𝑁

𝑖=1 ) 

 

Where 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑡 is a function describes a cost for between the ground truth 𝑦𝑖 and the 

prediction in index 𝜋(𝑖) (will be defined later).  

To obtain this optimal assignment, we can approach it as solving an assignment problem, 

which can be effectively addressed using the well-known "Hungarian algorithm". 

In the matching cost calculation, both the class prediction and the similarity between the 

predicted and ground truth boxes are considered: 

We denote 𝑦𝑖 = (𝑐𝑖, 𝑏𝑖), where 𝑐𝑖 is the class and 𝑏𝑖 is a four elements vector describing 

the bounding box (width, height and center). Also, for index 𝜋(𝑖), �̂�𝜋(𝑖)(𝑐𝑖) is the 

probability of class 𝑐𝑖, and �̂�𝜋(𝑖) the predicted bounding box. Then - 

 

(2) 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑡(𝑦𝑖, �̂�𝜋(𝑖) ) =  −�̂�𝜋(𝑖)(𝑐𝑖) + 𝐿(𝑏𝑖, �̂�𝜋(𝑖)) 

 

Where 𝐿(𝑏𝑖, �̂�𝜋(𝑖)) measures the similarity between the boxes (The lower the better). 

Predictions with high probability for the class 𝑐𝑖 and similar predicted box, will get a 

low match cost and will be more likely to match this ground truth box, and vice versa. 

Note – the Hungarian matching results a one-to-one assignment, as opposed to YOLO-

like models who assign many predictions to one label. 

After we computed the best matching �̂�, we define the loss function: 

(3) 𝐷𝐸𝑇𝑅𝐿𝑜𝑠𝑠(𝑦, �̂�) =  ∑ [−𝑙𝑜𝑔𝑁
𝑖=1 (�̂��̂�(𝑖)(𝑐𝑖)) +  𝐿(𝑏𝑖, �̂��̂�(𝑖)) ] 

The calculation of the matching cost follows a similar approach as the definition of the 

matching cost, with the only difference being the use of the logarithm of the class 

probability prediction, which has been found to be empirically beneficial. 



The last term to be defined is 𝐿(𝑏𝑖, �̂�𝜋(𝑖)), which is the sum of two terms – the L1 loss of 

every pair of measurements of the boxes, and the 1 – IoU of the boxes. For the padded 

labels, no bounding box loss is added. 

 

In summary, this novelty loss function encourages the model to output a unique 

prediction for every label, and a "not object" class for the rest of the predictions. 

 

Performance and Evaluation 

To assess the performance of DETR and understand its strengths and weaknesses, it is 

essential to conduct a comparative analysis with other state-of-the-art object detection 

models. By comparing DETR with traditional models like RCNN and YOLO, as well 

as other modern architectures, we can gain valuable insights into its capabilities. 

 

One key aspect to consider is the detection accuracy achieved by DETR compared to 

other models. DETR has demonstrated remarkable performance in terms of accuracy, 

often surpassing traditional models. Its ability to handle varying object scales, 

deformations, and occlusions, combined with the use of transformers for global context 

modeling, allows DETR to capture intricate object details and achieve high localization 

precision. Comparative evaluation using standard metrics like mean Average Precision 

(mAP) shows that DETR (and later – its improved variants) consistently achieves 

competitive or even superior performance compared to other models. As of the end of 

2022 the leaderboard of all the object detection benchmarks is led by variants of DETR. 

 

Another important aspect to evaluate is the computational efficiency of DETR compared 

to alternative methods. Traditional models like RCNN often rely on complex region 

proposal mechanisms, which can be computationally expensive. In contrast, DETR's 

end-to-end nature eliminates the need for region proposal networks and subsequent post-

processing steps, resulting in a more efficient inference process. While DETR may have 

a higher training time compared to some models due to its transformer-based 

architecture, the inference speed is often faster, making it suitable for real-time 

applications. 

 

Furthermore, the ability of DETR to handle object detection in a holistic and unified 

framework brings significant advantages. By simultaneously predicting object classes 

and their corresponding bounding boxes, DETR eliminates the need for separate 

classification and localization stages, reducing complexity and potential error 

propagation. This end-to-end approach enables DETR to deliver more robust and 

accurate predictions, especially in challenging scenarios with crowded or overlapping 



objects. These scenarios, often overlooked by benchmarks that primarily focus on 

quantitative metrics, highlight the true value of DETR's end-to-end framework. By 

considering the complete context and interdependencies between objects, DETR can 

effectively handle complex scenes and produce reliable predictions that capture the 

intricacies of object relationships. 

 

Limitations and Drawbacks of DETR 

While DETR presents a promising approach to end-to-end object detection, it is 

important to consider its limitations and potential drawbacks. Some notable aspects 

include: 

 

1. Training Time: Training DETR models can be computationally expensive and time-

consuming compared to traditional object detection methods. The large-scale 

transformer architecture and the bipartite matching process contribute to longer training 

times, requiring substantial computational resources. 

 

2. Inference Time: Inference with DETR can also be relatively slow compared to other 

object detection models. The sequential nature of transformer-based processing and the 

need to process the entire image at once can result in increased inference time. 

 

3. Memory Requirements: DETR models often demand significant memory resources 

due to the large number of parameters in the transformer architecture. This can pose 

challenges, particularly when deploying DETR on resource-constrained devices or in 

real-time applications. 

 

4. Interpretability: The interpretability of DETR can be challenging due to the complex 

nature of transformer-based architectures. Understanding the decision-making process 

of DETR and explaining its predictions can be more difficult compared to traditional 

object detection models. 

 

It is important to consider these limitations and trade-offs when deciding to use DETR 

in specific applications. While DETR offers significant advantages, addressing these 

limitations and optimizing the training and inference processes will further enhance its 

practical utility in various scenarios. 

  



Pix2Seq 

 

 

Figure 20: Illustration of Pix2Seq framework for object detection. The neural net perceives an 

image and generates a sequence of tokens that correspond to bounding boxes and class labels. 

 

"Pix2seq: A Language Modeling Framework for Object Detection" is a new approach 

to object detection that casts it as a language modeling task (see Figure 20). The authors 

propose to represent object detection as the task of generating a sequence of tokens that 

describe the objects in an image. The tokens can be used to represent the bounding boxes 

and class labels of the objects. The authors then train a neural network to perceive the 

image and generate the desired sequence of tokens. 

 

Pix2Seq uses a neural network architecture that consists of an encoder and a decoder. 

The encoder takes the image as input and produces a latent representation of the image. 

The decoder then takes the latent representation as input and generates the sequence of 

tokens. 

 

The network is trained using a maximum likelihood objective function. The objective 

function is simply the probability of the ground truth sequence of tokens given the 

image. 

 

The authors evaluate their approach on the COCO dataset and show that it achieves 

competitive results to existing object detection methods. They also show that their 

approach can be used to perform object detection in real time. 

 



Architecture 

Pix2Seq adopts an encoder-decoder architecture for its image-to-sequence translation 

task. The encoder component is responsible for perceiving the pixel-level information 

from the input image and encoding it into latent representations. Various encoder 

architectures can be employed, including Convolutional Neural Networks (like the ones 

mentioned at the "Common CNN architectures" section), transformer-based models, or 

a combination of these approaches. 

 

The generation process in Pix2Seq is facilitated by a Transformer decoder. The 

Transformer decoder generates one token at a time, conditioned on both the preceding 

tokens and the encoded representation of the input image. This sequential generation 

approach eliminates the need for complex and customized architectures found in modern 

object detectors, such as bounding box proposal and regression. Instead, tokens are 

generated from a single vocabulary using a SoftMax operation, simplifying the overall 

architecture and enhancing the model's interpretability. 

 

Loss 

In a manner similar to language modeling, the training of Pix2Seq involves predicting 

tokens based on an image and preceding tokens. This prediction is guided by a maximum 

likelihood loss function, defined as the negative sum of the log probabilities of the 

predicted tokens given the input image and preceding tokens: 

− ∑ wj log P(yj̃ |x, y1:𝑗−1) 

𝐿

𝑗=1

 

 

Here, 𝑥 represents the given input image, while 𝑦 and �̃� are input and target sequences 

associated with 𝑥, and L is the target sequence length. 𝑦 and �̃� are identical in the 

standard language modeling setup, but they can also be different (e.g., for 

augmentations). 𝑤𝑗  is a pre-assigned weight for j-th token in the sequence. 

 

Inference 

During the inference phase, the Pix2Seq model generates sequences by sampling tokens 

from the model likelihood distribution P(𝑦𝑗 | x, y1:𝑗−1). This sampling process can be 

performed in different ways, when the simplest one is to select the token with the highest 

likelihood. 



 The generation of the sequence continues until the EOS (End-of-Sequence) token is 

generated, indicating the completion of the sequence. Once the sequence is generated, it 

becomes straightforward to extract and de-quantize the object descriptions. This 

involves retrieving the predicted bounding boxes and class labels. 

 

Performance and Evaluation 

As can be seen in the table below (Figure 21), Pix2Seq has demonstrated competitive 

performance comparable to that of DETR. 

 

Figure 21: Comparing basic CNNs, DETR and pix2seq. According to pix2seq article writers, 

it gets the AP with smaller number of params. 

One of the most thrilling  

 

 

One notable advantage of Pix2Seq is its output representation as language tokens, which 

inherently provides a distribution of box dimensions and classes. This distribution 

enables applications to obtain more detailed information regarding the model's 

certainty. For instance, it can be beneficial for an autonomous driving model that 

receives a sequence of images for estimating the physical movement of objects using a 

Kalman filter. 

 

On the other hand, as an autoregressive architecture, Pix2Seq is relatively slow.  

For example, in a crowded scene, the model will iteratively run O(k*n) iterations, where 

k is the number of boxes params, and n is the number of objects (as opposed to YOLO 

and DETR who are not dependent on the number of objects).  



4. Experiments 

Mobileye Global Inc. (ME) is a company developing autonomous driving technologies 

and advanced driver-assistance systems (ADAS) including cameras, computer chips and 

software. I am working at ME since 2020 as an algorithm developer, and my team is 

specialized in neural networks for 3D object detection based on images inputs.  

In this section, I will present and compare the results of YOLO and DETR models I 

trained for vehicle and pedestrian detection in 2D and 3D (a Pix2Seq model is still not 

stable). The exact architecture' loss and data are ME confidential, and therefore only 

limited information will be presented. 

It's important to note that the networks are designed for success in the task of 

autonomous driving on Mobileye's chip. Therefore, both achieving the highest level of 

performance and running time are of utmost importance, as real-time results need to be 

obtained. 

 

Additionally, some of the experiments are part of a work-in-progress (WIP) process, so 

the results are temporary and subject to change. 

 

YOLO-like model 

The first model we tried to train was a YOLO like architecture. The network is based on 

a ResNet-52 backbone and another head in a Unet architecture.  

For runtime acceleration, the output resolution is 8 times smaller than the input 

resolution. 

 

The model outputs both 2D and 3D boxes measurements, and a confidence channel – for 

every "pixel" of the output. We then apply a post process based on NMS with overlap 

threshold of 0.1, with some more relaxations to decrease the number of output 

candidates. 

 

After some hyperparameters tuning we converged a model with a very high-

performance exceeding AP of 97.1% for reasonably visible closer than 40 meters 

vehicles (Recall vs Precision can be shown in figure 22).  

https://en.wikipedia.org/wiki/Autonomous_driving
https://en.wikipedia.org/wiki/Advanced_driver-assistance_systems


 

Figure 22: Zoon in of Recall-Precision curve of YOLO model. Results are very good, but still 

need to be improved. 

We chose confidence threshold of 0.946 to achieve recall of 98% for precision of 99%. 

For harder objects (hidden / far) the AP decreases to 80%-90% and for very hard objects 

– 60%-70%. 

I developed a sophisticated GUI for presenting the raw output of the model and the post 

processed results (An example is shown in figure 23). 

 

Figure 23: A typical output of YOLO model.   

On the top left - input image + model predictions (3d boxes projected to image).  

On the bottom left – output confience map.  



On the right – birds eye view of 3D boxes prediction 

 

The model and post process are running very fast on EyeQ chip (around 50 ms) and are 

already in production. Deploying the model to the EyeQ chip was seamless since it is 

supporting the basic layers such as convolutions and ReLU. 

As explained in this paper, some inherent issues popped up -   

1. For overlapping objects (in image space), we tend to get "mid-boxes" – both in 

2D and 3D (figure 24). 

2. Some objects were "detected" by the model but were dropped out because of the 

sophisticated handcrafted post process. 

3. Sometimes NMS clusters two different objects as one and sometimes few 

predictions of the same object survive it. 

 

 

Figure 24: Red box is a false positive caused by the "mid-box issue" – when an output pixel 

covers two objects in input, prediction tries to capture both objects. 

 

As part of the training process, we have taken measures to avoid cases of mid-boxes and 

have also adjusted a specific set of post-processing parameters to enhance performance 

on the validation set. However, these efforts have not completely overcome edge cases 

that arise across different configurations, resulting in a trade-off between recall and 

precision in any case.  



For example – we trained the model to prefer the closer object when it has a "doubt" 

whether the pixel in the output belongs to the closer or farer object. This decreased the 

number of mid-box events, but also decrease the recall on far (and naturally small in 

image space) objects. 

 

DETR 

Based on the same backbone, we switched the YOLO head by a DETR head, and used 

the set-to-set loss for training. 

The first results were hard to converge, so we used some advanced variants of DETR 

such as DAB (Dynamic Anchor Boxes) [18], which led to great results. In general, DETR 

model handled hard scenarios better, had less false positives and  

The current AP is 97.8% (a bit higher than the YOLO model), and no post process is 

required. 

But moreover – in addition to the better quantitative results, qualitative results are shown 

as well. 

In the following images the first is from YOLO model and the second is from DETR. In 

the left is the input image (and the output confidence map for YOLO model) and in the 

right BEV (Bird's eye view). The solid boxes are labels (ground truth), and the dashed 

boxes are predictions. 

 

1. Line of cars: The objects are dense, and as they get more far, they got less visible 

and have less pixels in the image. As a result, the YOLO resolution output is not 

sufficient to cover all the line and many objects are missed, (see Figure 25). As 

opposed, the DETR model (Figure 26) manage to detect and output more vehicles 

(though not all of them).  



 

Figure 25: YOLO model misses few objects in the line, missing objects are colored in red. 

 

Figure 26: DETR model manages to detect two of the missing objects of YOLO model. 



 

2. Far object: (few pixels in input and output): YOLO model misses the vehicle 

while DETR detects it: 

 

Figure 27: YOLO model misses the vehicle in 60 meters (red colored). 



 

 

3. Occluded truck  

 

Figure 29: YOLO model misses the truck, hidden by a car. 

Figure 28: DETR detects the vehicle missed by YOLO, though it's far and hidden. 



 

 

 

Figure 30: DETR model detects the hidden truck. 

 

The DETR model is a WIP, and we are still trying to improve it. One of the great 

challenges is to make it train and run (inference) faster. Currently, training DETR model 

takes around twice the time of YOLO model, and we cannot run it on EyeQ hardware 

yet since it doesn’t support some of the key components of the transformer. 

  



5. Summary and conclusions 

In this comprehensive exploration of end-to-end object detection, we have delved into 

the foundations, methodologies, and cutting-edge advancements in the field. Object 

detection is a crucial task in computer vision, and over the years, it has seen significant 

developments, transforming from classical approaches like HOG and Viola-Jones to 

modern neural network-based models. 

 

We began by elucidating the challenges in object detection, including intra-class 

variation, the sheer number of categories, and the demand for efficiency in 

contemporary models. Datasets and evaluation metrics were also discussed, 

emphasizing the importance of metrics like mean Average Precision (mAP) in assessing 

detection performance. 

 

We then transitioned to the realm of Convolutional Neural Networks (CNNs) and 

transformers. We dissected the foundational elements of CNNs, from convolutional 

layers to common architectures like AlexNet, VGG, and ResNet. The emergence of 

transformers in the domain of computer vision was explored, showcasing their self-

attention mechanism and multi-head attention capabilities. 

 

Moving forward, we introduced state-of-the-art object detection frameworks. The 

discussion encompassed the RCNN family, followed by the YOLO series. These models 

have brought remarkable advancements to the field and opened new avenues for real-

time object detection. 

 

The notion of end-to-end object detection was highlighted as a significant stride in 

improving detection accuracy and robustness. By eliminating the need for post-

processing steps like Non-Maximum Suppression (NMS), end-to-end models offer a 

holistic solution, as demonstrated in experiments. 

 

 

The landscape of object detection has witnessed a remarkable transformation, from 

traditional methods to contemporary deep learning approaches. With the advent of end-

to-end object detection frameworks like DETR, there's a clear trend towards models that 

integrate object detection and localization seamlessly. 

 

As we conclude this exploration, it's evident that the object detection field is dynamic 

and evolving. End-to-end models exemplify the potential of modern computer vision 

techniques. These models not only simplify the detection pipeline but also offer 

improved accuracy and adaptability. 



 

The future of object detection holds the promise of even more advanced models, novel 

evaluation metrics, and a deeper integration of machine learning techniques with real-

world applications. Whether in autonomous vehicles, surveillance systems, or medical 

imaging, the quest for precise, efficient, and reliable object detection remains a driving 

force in computer vision research and development.  
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